

Lecture Notes in Computer Science 4383
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Eyal Bin Avi Ziv Shmuel Ur (Eds.)

Hardware and Software,
Verification and Testing

Second International Haifa Verification Conference, HVC 2006
Haifa, Israel, October 23-26, 2006
Revised Selected Papers

13

Volume Editors

Eyal Bin
Avi Ziv
Shmuel Ur
IBM Labs, Haifa University
Mount Carmel, Haifa 31905, Israel
E-mail: {bin,aziv,ur}@il.ibm.com

Library of Congress Control Number: 2007920490

CR Subject Classification (1998): D.2.4-5, D.2, D.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-70888-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70888-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12019380 06/3142 5 4 3 2 1 0

Preface

The Haifa Verification Conference 2006 took place for the second year in a row at the
IBM Haifa Research Lab and at the Haifa University in Israel during October 23–26,
2006. The verification conference was a three-day, single-track conference followed
by a one-day tutorial on PSL.

This Haifa Verification Conference was established to bring together researchers
from two different disciplines, hardware verification and software testing. The use of
similar techniques among the two communities enabled the conference to help
generate a unique synergy that fortifies both groups. This year, we had two traditional
tracks, hardware verification and software testing, in addition to a new track dedicated
to tools in these areas.

The conference emphasized applicability to real-world challenges, which was vital
to the many attendees coming from industry. The conference hosted two
internationally recognized individuals as keynote speakers. Randal E. Bryant, Dean
and University Professor from the School of Computer Science at Carnegie Mellon
University gave a talk on “System Modeling and Formal Verification with UCLID”
and Michael Jackson from the University of Newcastle gave a talk on “Testing the
Machine in the World.” The numerous invited speakers presented topics of great
interest to the audience. Just some of these outstanding speakers included Cindy
Eisner in the hardware verification track, Alon Gluska and Andrew Piziali in the tools
track, and Mauro Pezze and Nir Shavit in the software testing track. The prize for
Best Paper was awarded to Stefan Staber, Gerschwin Fey, Roderick Bloem and Rolf
Drechsler from Graz University of Technology and the University of Bremen, for
their paper titled “Automatic Fault Localization for Property Checking.”

Thirty-three papers from ten countries were submitted, including Israel, Finland,
India, the Czech Republic, Germany, China, USA, Spain, France, and Switzerland.
The papers were reviewed by the Program Committee and additional referees, with an
average of 3.6 reviews per paper. Of the papers submitted, 15 were accepted. The
acceptance was based on the score received, the reviewer’s confidence and the final
decisions of the Organizing Committee. The keynote speakers and the invited
speakers were encouraged to submit papers as well. This volume is composed of the
papers accepted by the committee and the invited papers. This volume also includes
an abstract of the conference panel on the “Unpaved Road between Hardware
Verification and Software Testing Techniques” moderated by Shmuel Ur.

This year’s conference included a number of new initiatives. A Web application
was adopted to enable the online submission and review of papers. A ten-minute
multimedia clip was produced to provide an overview of the activities in the
conference. The clip covered recent news highlights in verification from around the
world and gave viewers a short virtual tour of Haifa through scenes from around the
city. The conference also included a tool exhibition where leading EDA companies
presented their products. The conference organizers initiated a ‘speed networking’

VI Preface

session; based on the original idea of speed dating, this activity helped foster
introductions and collaboration among individuals attending the event.

Attendance at the conference was very high throughout the four conference days,
with more than 250 participants from several different countries. The facilities
provided by the IBM Haifa Research Labs and the Caesarea Edmond Benjamin de
Rothschild Foundation Institute for Interdisciplinary Applications of Computer
Science (C.R.I.) were remarked upon very favorably by the attendees, as was the
proficiency of the administrative assistants.

We would like to thank our sponsors, IBM and CRI, the Organizing Committee,
and the Program Committee. Our appreciation goes out to the administrative
assistants, especially Vered Aharon from IBM and Rona Perkis from CRI. Special
thanks to Shai Halevi, Iliya Kalderon, Ido Levy, and Valentin Mashiah for their
important help with the submission and review Web application. We also wish to
thank the communications team for their important role: Ettie Gilead, Chani Sacharen,
Yair Harry, Tamar Dekel, Hanan Singer and Anne Lustig-Picus. Many thanks to Tsvi
Kuflik for his vital help with the proceedings. We would also like to extend special
thanks all the authors who contributed their work.

It is our hope that the enthusiasm and value generated by this conference will lead
to many other interesting events in the growing fields addressed by the hardware
verification and software testing communities.

We would like also to thank Dana Fisman for giving the tutorial on PSL.

October 2006 Eyal Bin

Organization

The Haifa Verification Conference 2006 was organized by:

General Chair and Program Chair

Eyal Bin (bin@il.ibm.com)

Verification Conference Organizing Committee

Eyal Bin (bin@il.ibm.com)
Gadiel Auerbach (gadiel@il.ibm.com)
Laurent Fournier (laurent@il.ibm.com)
Moshe Levinger (levinger@il.ibm.com)
Shmuel Ur (ur@il.ibm.com)
Yaniv Eytani (ieytani@cslx.haifa.ac.il)
Yaron Wolfsthal (wolfstal@il.ibm.com)
Karen Yorav (yorav@il.ibm.com)
Avi Ziv (aziv@il.ibm.com)

Verification Track Co-chairs

Laurent Fournier, IBM Haifa Labs, Israel (laurent@il.ibm.com)
Karen Yorav, IBM Haifa Labs, Israel (yorav@il.ibm.com)

Tools Track Co-chairs

Avi Ziv, IBM Haifa Labs, Israel (aziv@il.ibm.com)
Gadiel Auerbach, IBM Haifa Labs, Israel (gadiel@il.ibm.com)

Software Testing Track Chair

Shmuel Ur, IBM Haifa Labs, Israel (ur@il.ibm.com)

PSL Tutorial Track Chair

Gadiel Auerbach, IBM Haifa Labs, Israel (gadiel@il.ibm.com)

 Organization VIII

Program Committee

Aarti Gupta, NEC Labs America (agupta@nec-labs.com)
Abraham Kandel, University of South Florida, USA (kandel@cse.usf.edu)
Alessandro Cimatti, IRST - Istituto per la Ricerca Scientifica e Tecnologica, Italy

(cimatti@itc.it)
Amos Noy, Cadence (amos@cadence.com)
Andrew Piziali, Cadence (andy@cadence.com)
Assaf Schuster, Technion Institute, Haifa, Israel (assaf@cs.technion.ac.il)
Avi Ziv, IBM Haifa Labs, Israel (aziv@il.ibm.com)
Bernd Finkbeiner, Universität des Saarlandes , Germany (finkbeiner@cs.uni-sb.de)
Cindy Eisner, IBM Haifa Labs, Israel (EISNER@il.ibm.com)
Daniel Kroening, Computer Systems Institute, ETH Zuerich

(kroening@handshake.de)
Dominique Borrione, Laboratoire TIMA (Dominique.Borrione@imag.fr)
Eitan Farchi, IBM Haifa Labs, Israel (farchi@il.ibm.com)
Erich Marschner, Cadence (erichm@cadence.com)
Eyal Bin, IBM Haifa Labs, Israel (bin@il.ibm.com)
Fabio Somenzi, University of Colorado (fabio@Colorado.EDU)
Gadiel Auerbach, IBM Haifa Labs, Israel (GADIEL@il.ibm.com)
Geert Janssen, IBM T.J. Watson Research Center (geert@watson.ibm.com)
Holger Hermanns, Saarland University, Germany (hermann@cs.uni-sb.de)
IIan Harris, University of California, Irvine (harris@ics.uci.edu)
Jason Baumgartner, IBM Austin (baumgarj@us.ibm.com)
Joao Lourenco, University Nova de Lisboa (Joao.Lourenco@di.fct.unl.pt)
Jong-Deok Choi, IBM Research, USA (jdchoi@us.ibm.com)
Karen Yorav, IBM Haifa Labs, Israel (YORAV@il.ibm.com)
Ken McMillan, Cadence (mcmillan@cadence.com)
Kerstin Eder, University of Bristol (eder@cs.bris.ac.uk)
Klaus Havelund, NASA's Jet Propulsion Labratory (Klaus.Havelund@jpl.nasa.gov)
Laurent Fournier, IBM Haifa Labs, Israel (LAURENT@il.ibm.com)
Lyes Benalycherif, STMicroelectronics (Lyes.Benalycherif@st.com)
Mark Last, Ben Gurion University, Israel (mlast@bgumail.bgu.ac.il)
Mauro Pezze, Universita degli Studi di Milano, Bicocca (pezze@disco.unimib.it)
Moshe Levinger, IBM Haifa Labs, Israel (LEVINGER@il.ibm.com)
Ofer Strichman, Technion, Israel (ofers@ie.technion.ac.il)
Orit Edelstein, IBM Haifa Labs, Israel (edelstein@il.ibm.com)
Orna Kupferman, Hebrew University, Israel (orna@cs.huji.ac.il)
Pablo P. Sanchez, University of Cantabria (sanchez@teisa.unican.es)
Paul Strooper, University of Queensland, Australia (pstroop@itee.uq.edu.au)
Roderick Bloem, Graz University of Technology (Roderick.Bloem@ist.TUGratz.at)
Scott Stoller, SUNY Stony Brook, USA (stoller@cs.sunysb.edu)
Serdar Tasiran, Koç University, Turkey (stasiran@ku.edu.tr)
Sharad Malik, Princeton University (sharad@princeton.edu)
Shmuel Ur, IBM Haifa Labs, Israel (UR@il.ibm.com)

 Organization IX

Tao Xie, North Carolina State University, USA (taoxie@acm.org)
Tsvi Kuflik, University of Haifa, Israel (tsvikak@mis.hevra.haifa.ac.il)
Warren Hunt, University of Texas, Austin (hunt@cs.utexas.edu)
Willem Visser, NASA, USA (wvisser@email.arc.nasa.gov)
Wolfgang Roesner, IBM Austin, USA (wolfgang@us.ibm.com)
Yaron Wolfsthal, IBM Haifa Labs, Israel (wolfstal@il.ibm.com)
Ziyad Hanna, Intel Israel (ziyad.hanna@intel.com)

Additional Referees

Ali Bayazit
Allon Adir
Andreas Griesmayer
Benny Godlin
Calogero Zarba
Georg Weissenbacher
Hana Chockler
Jörn Guy Süß
Klaus Draeger
Marco Roveri
Margaret Wojcicki
Mark Moulin
Nicolas Blanc
Orna Raz
Philippe Georgelin
Rachel Tzoref
Stefan Staber
Yarden Nir-Buchbinder
Yoad Lustig
Zhaohui Fu

Table of Contents

Hardware Verification Track

Model Checking PSL Using HOL and SMV . 1
Thomas Tuerk, Klaus Schneider, and Mike Gordon

Using Linear Programming Techniques for Scheduling-Based Random
Test-Case Generation . 16

Amir Nahir, Yossi Shiloach, and Avi Ziv

Extracting a Simplified View of Design Functionality Based on Vector
Simulation . 34

Onur Guzey, Charles Wen, Li-C. Wang, Tao Feng,
Hillel Miller, and Magdy S. Abadir

Automatic Fault Localization for Property Checking 50
Stefan Staber, Görschwin Fey, Roderick Bloem, and Rolf Drechsler

Verification of Data Paths Using Unbounded Integers: Automata Strike
Back . 65

Tobias Schuele and Klaus Schneider

Tools Track

Smart-Lint: Improving the Verification Flow . 81
Itai Yarom and Viji Patil

Model-Driven Development with the jABC . 92
Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jörges, and
Christian Kubczak

Detecting Design Flaws in UML State Charts for Embedded
Software . 109

Janees Elamkulam, Ziv Glazberg, Ishai Rabinovitz, Gururaja Kowlali,
Satish Chandra Gupta, Sandeep Kohli, Sai Dattathrani, and
Claudio Paniagua Macia

A Panel: Unpaved Road Between Hardware Verification and Software
Testing Techniques . 122

Shmuel Ur

An Open Source Simulation Model of Software Development
and Testing . 124

Shmuel Ur, Elad Yom-Tov, and Paul Wernick

XII Table of Contents

Software Testing Track

ExpliSAT: Guiding SAT-Based Software Verification with Explicit
States . 138

Sharon Barner, Cindy Eisner, Ziv Glazberg, Daniel Kroening, and
Ishai Rabinovitz

Evolutionary Testing: A Case Study . 155
Stella Levin and Amiram Yehudai

A Race-Detection and Flipping Algorithm for Automated Testing
of Multi-threaded Programs . 166

Koushik Sen and Gul Agha

Explaining Intermittent Concurrent Bugs by Minimizing Scheduling
Noise . 183

Yaniv Eytani and Timo Latvala

Testing the Machine in the World . 198
Michael Jackson

Choosing a Test Modeling Language: A Survey . 204
Alan Hartman, Mika Katara, and Sergey Olvovsky

Making Model-Based Testing More Agile: A Use Case Driven
Approach . 219

Mika Katara and Antti Kervinen

Author Index . 235

Model Checking PSL Using HOL and SMV

Thomas Tuerk1,�, Klaus Schneider1, and Mike Gordon2

1 Reactive Systems Group
Department of Computer Science, University of Kaiserslautern

P.O. Box 3049, 67653 Kaiserslautern, Germany
http://rsg.informatik.uni-kl.de

2 University of Cambridge Computer Laboratory
William Gates Building, JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

http://www.cl.cam.ac.uk

Abstract. In our previous work, we formally validated the correct-
ness of a translation from a subset of Accellera’s Property Specification
Language (PSL) to linear temporal logic (LTL) using the HOL theorem
prover. We also built an interface from HOL to the SMV model checker
based on a formal translation of LTL to ω-automata. In the present paper,
we describe how this work has been extended and combined to produce a
model checking infrastructure for a significant subset of PSL that works
by translating model checking problems to equivalent checks for the ex-
istence of fair paths through a Kripke structure specified in higher order
logic. This translation is done by theorem proving in HOL, so it is proven
to be correct. The existence check is carried out using the interface from
HOL to SMV. Moreover, we have applied our infrastructure to implement
a tool for validating the soundness of a separate PSL model checker.

1 Introduction

The Property Specification Language (PSL) [1] is an industrial-strength tempo-
ral logic. It was developed by the Functional Verification Technical Committee of
Accellera based on IBM’s Sugar language [3] and has now become an IEEE stan-
dard. It is designed both for formal verification and for simulation and has been
described as the most popular property specification language in industry [10].

The linear time subset of PSL is a complex language that includes many
special cases with subtle semantics. It is well known how LTL can be translated
to equivalent ω-automata [30,9,13,12,23], but PSL additionally provides a reset
(abort) operator whose semantics has been the subject of debate. In order to
study the impact of different kinds of abort operators on the complexity of the
translation and verification, a logic RLTL [2] was introduced that extends LTL by
a reset operator. It turned out that, in the worst case, Version 1.01 of PSL lead
to a non-elementary blow-up in the translation to ω-automata. For this reason,
the semantics of PSL’s reset operator were changed in Version 1.1 (the current

� This work has been done while this author visited the University of Cambridge
Computer Laboratory.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 T. Tuerk, K. Schneider, and M. Gordon

version). Thus, a significant subset of PSL can now be translated to RLTL. A
further translation from RLTL to LTL has already been presented in [2].

Because of the subtle semantics of PSL, it is non-trivial to ensure that imple-
mentations accurately reflect the official language standard. Thus, we feel that
there is value in using automated formal methods to reason about the semantics
of PSL in general, and to verify model checking algorithms for this logic. PSL has
already been deeply embedded in HOL [15] and a translation from a significant
subset of PSL to ω-automata via RLTL and LTL has been verified [26,25]. How-
ever, in this previous work only the correctness of these translations has been
proved.

In this paper, we use revised versions of the correctness translation theorems
to create PSL implementation infrastructure directly on top of the formalisation
of the standard PSL semantics. Model checking problems for PSL can be handled
fully automatically. We have used this infrastructure to build a specific tool to
check the accuracy of an implementation of PSL used by IBM’s RuleBase CTL
model checker. We were able to detect an incorrectness (unknown to us, but
known to IBM) in the implementation of clocked aborts (they are treated as
synchronous but should have been asynchronous).

Our infrastructure includes formal translators, implemented by theorem-
proving in HOL, from the linear time fragment of PSL to LTL and from LTL
to ω-automata. Although these are based on previous work, they were largely
rewritten so that they could be turned into a new automatic tool for translating
PSL to automata. To check the existence of fair paths, we use a link from HOL
to SMV. This is based on Schneider’s earlier work, though we changed from a
shallow to a deep embedding of LTL in HOL and modified many details. Model
checking problems for PSL can be translated, using theorem proving, to equiva-
lent checks for the existence of fair paths through a Kripke structure. A proof of
the correctness of the emptiness check is created by these translation procedures.
The resulting check is finally performed by SMV [19].

The rest of this paper is organised as follows. The formalisms we use are
explained in the next section. We then briefly sketch translations between them.
In Section 4, we describe the infrastructure and in Section 5, we outline its
application to build a tool to validate the handling of PSL by RuleBase. Finally,
we draw some conclusions and show directions for future work.

2 Basic Notions

Temporal logics like LTL, RLTL and PSL use propositional logic to describe (sta-
tic) properties of the current point of time. The semantics of temporal properties
is based on sequences of points of time called paths, which are usually defined by
transition systems. Thus, we first define propositional logic, paths and transi-
tion systems in this section. Then, the logics LTL, RLTL, and PSL are presented.
Finally, ω-automata are introduced.

Model Checking PSL Using HOL and SMV 3

Definition 1 (Propositional Logic). Let V be a set of variables. Then, the
set of propositional formulas over V (short propV) is recursively given as follows:

– each variable v ∈ V is a propositional formula
– ¬ϕ ∈ propV , if ϕ ∈ propV
– ϕ ∧ ψ ∈ propV , if ϕ, ψ ∈ propV

An assignment over V is a subset of V. In our context, assignments are also
called states. The set of all states over V, which is the power set of V, is denoted
by P(V). The semantics of a propositional formula with respect to a state s is
given by the relation |=prop that is defined as follows:

– s |=prop v iff v ∈ s
– s |=prop ¬ϕ iff s �|=prop ϕ
– s |=prop ϕ ∧ ψ iff s |=prop ϕ and s |=prop ψ

If s |=prop ϕ holds, then the assignment s is said to satisfy the formula ϕ.

We use the operators ∨, → and ↔ and the constants true and false as syntactic
sugar with their usual meaning.

A finite word v over a set Σ of length |v| = n+1 is a function v : {0, . . . n}→Σ.
An infinite word v over Σ is a function v : N → Σ and its length is denoted
by |v| = ∞. The set Σ is called the alphabet and the elements of Σ are called
letters. The finite word of length 0 is called the empty word (denoted by ε). For
reasons of simplicity, v(i) is often denoted by vi for i ∈ N. Using this notation,
words are often given in the form v0v1v2 . . . vn or v0v1 The set of all finite
and infinite words over Σ is denoted by Σ∗ and Σω, respectively.

Counting starts from zero, i. e. vi−1 refers to the i-th letter of v. Furthermore,
vi.. denotes the suffix of v starting at position i, i. e. vi.. = vivi+1 . . . for all i < |v|.
The finite word vivi+1 . . . vj is denoted by vi..j . Notice that in case j < i, the
expression vi..j evaluates to the empty word ε. For two words v1, v2 with v1 ∈ Σ∗,
we write v1v2 for their concatenation. The union v1 ∪v2 of two words v1, v2 with
|v1| = |v2| over sets is defined as the word v with |v| = |v1| = |v2| and vj = vj

1∪vj
2

for all j < |v|. Analogously, the intersection v1 ∩ v2 of v1 and v2 is defined. We
write lω for the infinite word v with vj = l for all j.

2.1 Kripke Structures

Systems used with model checking techniques are usually given as labelled tran-
sition systems that are often called Kripke structures. In this paper, we use
symbolically represented Kripke structures as usual in symbolic model checking.

Definition 2 (Symbolically Represented Kripke Structures). A sym-
bolically represented Kripke structure K over a set of variables V is a tuple
K = (I, R) such that

– I is a propositional formula over V
– R is a propositional formula over V ∪ {Xv | v ∈ V}

4 T. Tuerk, K. Schneider, and M. Gordon

A path p through K = (I, R) is an infinite word over V such that for all i, the
relation pi∪{Xv | v ∈ pi+1} |=prop R holds. A path p is called initial, iff p0 |=prop I
holds. A path is called fair according to some propositional formula f , called the
fairness condition, iff infinitely many letters of p satisfy the fairness condition,
i. e. iff the set {i | pi |=prop f} is infinite. The set of all initial paths through
K is denoted by IPath(K). The set of all initial paths that satisfy all fairness
constraints in the set fc is denoted by IPathfair(K, fc).

According to this definition, the new variable Xv is used to denote the value
of the variable v at the next state. It is often convenient to evaluate a whole
propositional formula instead of just one variable at the next state, so the X
operator is introduced as a shorthand for replacing every occurrence of a variable
v by Xv in a propositional formula. Similarly, X is also used to replace every
variable v in a set by Xv.

2.2 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) has been proposed for the specification of reactive
systems by Pnueli in [20]. LTL essentially consists of propositional logic enriched
with the temporal operators X and U. The formula Xϕ means that the property
ϕ holds at the next point of time, ϕ U ψ means that ϕ holds until ψ holds and
that ψ eventually holds.

Definition 3 (Syntax of Linear Temporal Logic (LTL)). The set ltlV of
LTL formulas over a given set of variables V is defined as follows:

– p ∈ ltlV for all p ∈ propV
– ¬ϕ, ϕ ∧ ψ ∈ ltlV , if ϕ, ψ ∈ ltlV
– Xϕ, ϕ U ψ ∈ ltlV , if ϕ, ψ ∈ ltlV

Further temporal operators can be defined as syntactic sugar, for example,
Fϕ := (true U ψ), Gϕ := ¬F¬ϕ, ϕ U ψ := ϕ U ψ ∨ Gϕ, and ϕ B ψ := ¬(¬ϕ) U ψ.
LTL with the operators U and X is, however, already expressively complete with
respect to the first order theory of linear orders [23].

Definition 4 (Semantics of Linear Temporal Logic (LTL)). For b ∈ propV
and ϕ, ψ ∈ ltlV the semantics of LTL with respect to an infinite word v ∈ P(V)ω

and a point of time t ∈ N is given as follows:

– v |=t
ltl b iff vt |=prop b

– v |=t
ltl ¬ϕ iff v �|=t

ltl ϕ
– v |=t

ltl ϕ ∧ ψ iff v |=t
ltl ϕ and v |=t

ltl ψ
– v |=t

ltl Xϕ iff v |=t+1
ltl ϕ

– v |=t
ltl ϕ U ψ iff ∃k. k ≥ t ∧ v |=k

ltl ψ ∧ ∀j. t ≤ j < k → v |=j
ltl ϕ

A word v ∈ P(V)ω satisfies a LTL formula ϕ ∈ ltlV (written as v |=ltl ϕ) iff v |=0
ltl

ϕ; a Kripke structure K satisfies ϕ (denoted K |=ltl ϕ) iff all paths v ∈ IPath(K)
satisfy ϕ.

Model Checking PSL Using HOL and SMV 5

2.3 Reset Linear Temporal Logic (RLTL)

To evaluate a formula ϕ U ψ, one has to consider a (potentially infinite) prefix
of a path, namely the prefix up to a state where ¬(ϕ∧¬ψ) holds. As simulations
may stop before that prefix is completely examined, the evaluation of formulas
could be incomplete, and is thus aborted. In order to return a definite truth
value, abort operators are introduced. The logic RLTL [2] extends LTL with an
abort operator called ACCEPT. This operator aborts the evaluation and accepts
a path, if a boolean condition is detected.

Definition 5 (Syntax of Reset Linear Temporal Logic (RLTL)). The fol-
lowing mutually recursive definitions introduce the set rltlV of RLTL formulas
over a given set of variables V:

– each propositional formula p ∈ propV is a RLTL formula
– ¬ϕ, ϕ ∧ ψ ∈ rltlV , if ϕ, ψ ∈ rltlV
– Xϕ, ϕ U ψ ∈ rltl, if ϕ, ψ ∈ rltlV
– ACCEPT(ϕ, b) ∈ rltlV , if ϕ ∈ rltlV , b ∈ propV

Definition 6 (Semantics of Reset Linear Temporal Logic (RLTL)). The
semantics of LTL is defined with respect to a word v and a point of time t. To
define the semantics of RLTL, an acceptance condition a ∈ propV and a rejection
condition r ∈ propV are needed in addition. These conditions are used to capture
the required information about ACCEPT operators in the context of the formula.
Thus, for b ∈ propV and ϕ, ψ ∈ rltlV , the semantics of RLTL with respect to
an infinite word v ∈ P(V)ω, acceptance/rejection conditions a, r ∈ propV and a
point of time t ∈ N is defined as follows:

– 〈v, a, r〉 |=t
rltl b iff vt |=prop a or (vt |=prop b and vt �|=prop r)

– 〈v, a, r〉 |=t
rltl ¬ϕ iff 〈v, r, a〉 �|=t

rltl ϕ
– 〈v, a, r〉 |=t

rltl ϕ ∧ ψ iff 〈v, a, r〉 |=t
rltl ϕ and 〈v, a, r〉 |=t

rltl ψ
– 〈v, a, r〉 |=t

rltl Xϕ iff vt |=prop a or
(
〈v, a, r〉 |=t+1

rltl ϕ and vt �|=prop r
)

– 〈v, a, r〉 |=t
rltl ϕ U ψ

iff ∃k. k ≥ t ∧ 〈v, a, r〉 |=k
rltl ψ ∧ ∀j. t ≤ j < k → 〈v, a, r〉 |=j

rltl ϕ
– 〈v, a, r〉 |=t

rltl ACCEPT(ϕ, b) iff 〈v, a ∨ (b ∧ ¬r), r〉 |=t
rltl ϕ

A word v ∈ P(V)ω satisfies a RLTL formula ϕ ∈ rltlV (written as v |=rltl ϕ) iff
〈v, false, false〉 |=0

rltl ϕ holds; a Kripke structure K satisfies ϕ (denoted K |=rltl ϕ)
iff all paths v ∈ IPath(K) satisfy ϕ.

2.4 Accellera’s Property Specification Language

PSL is a standardised industrial-strength property specification language [1]
chartered by the Functional Verification Technical Committee of Accellera. The
Sugar language [3] was chosen as the basis for PSL. The Language Reference
Manual for PSL Version 1.0 was released in April 2003. Finally, in June 2004,
Version 1.1 [1] was released, where some anomalies (like those reported in [2])
were corrected.

6 T. Tuerk, K. Schneider, and M. Gordon

PSL is designed as an input language for formal verification and simulation
tools as well as a language for documentation. Therefore, it has to be as readable
as possible, and at the same time, it must be precise and highly expressive. In
particular, PSL contains features for simulation like finite paths, features for
hardware specification like clocked statements and a lot of syntactic sugar.

PSL consists of four layers: The Boolean layer, the temporal layer, the veri-
fication layer and the modelling layer. The Boolean layer is used to construct
expressions that can be evaluated in a single state. The temporal layer is the
heart of the language. It is used to express properties concerning more than one
state, i. e. temporal properties. The temporal layer is divided into the Foundation
Language (FL) and the Optional Branching Extension (OBE). FL is, like LTL,
a linear time temporal logic. In contrast, OBE is essentially the branching time
temporal logic CTL [11], which is widely used and well understood. The verifi-
cation layer has the task of instructing tools to perform certain actions on the
properties expressed by the temporal layer. Finally, the modelling layer is used
to describe assumptions about the behaviour of inputs and to model properties
that cannot be represented by formulas of the temporal layer or auxiliary hard-
ware that is not part of the design. PSL comes in four flavours, corresponding
to the hardware description languages SystemVerilog, Verilog, VHDL and GDL.
These flavours provide a syntax for PSL that is similar to the syntax of the
corresponding hardware description language.

In this paper, only the Boolean and the temporal layers will be considered.
Furthermore, mainly the formal syntax of PSL is used, which differs from the
syntax of all four flavours. However, some operators are denoted slightly differ-
ently to the formal syntax to avoid confusion with similar LTL operators.

In this paper, only the linear temporal logic FL is considered. It consists of:

– propositional operators
– future temporal (LTL) operators
– a clocking operator for defining the granularity of time, which may vary for

subformulas
– Sequential Extended Regular Expressions (SEREs), for defining finite regular

patterns, together with strong and weak promotions of SEREs to formulas
and an implication operator for predicating a formula on match of the pat-
tern specified by a SERE

– an abort operator

Due to lack of space, only the subset of FL that is interesting for the translation
will be presented (e.g. clocks are eliminated using standard rewriting rules). Note
that we do not handle SEREs yet.

As described in Version 1.1 of the PSL standard, two special states � and
⊥ are needed to define the formal semantics of FL. The state � satisfies every
propositional formula, even the formula false, and state ⊥ satisfies no proposi-
tional formula, even the formula true is not satisfied. Using these two special
states, the semantics of a propositional formula ϕ ∈ propV with respect to a
state s ∈ P(V) ∪ {�, ⊥} is defined as follows:

Model Checking PSL Using HOL and SMV 7

– � |=xprop ϕ
– ⊥ �|=xprop ϕ
– s′ |=xprop ϕ iff s′ |=prop ϕ for s′ ∈ P(V), i. e. for s′ /∈ {�, ⊥}

For a given set of variables V , the set of extended states over V is denoted
by XP(V) := P(V) ∪ {�, ⊥}. The definition of the formal syntax of PSL uses
a special function for words over these extended states. For finite or infinite
words w ∈ XP(V)∗ ∪ XP(V)ω , the word w denotes the word over states that is
obtained from w by replacing every � with ⊥ and vice versa, i. e. for all i < |w|,
the following holds:

wi :=

⎧
⎨

⎩

⊥ : if wi = �
� : if wi = ⊥
wi : otherwise

Using these extended states and words over these states, the formal syntax and
semantics of SERE-free, unclocked FL (which we call SUFL) is defined as follows.

Definition 7 (Syntax of SUFL). The set of SUFL formulas suflV over a given
set of variables V is defined as follows:

– p, p! ∈ suflV , if p ∈ propV
– ¬ϕ ∈ suflV , if ϕ ∈ suflV
– ϕ ∧ ψ ∈ suflV , if ϕ, ψ ∈ suflV
– Xϕ, ϕ U ψ1 ∈ suflV , if ϕ, ψ ∈ suflV
– ϕ ABORT b ∈ suflV , if ϕ ∈ suflV , b ∈ propV

Definition 8 (Semantics of SUFL). For propositional formulas b ∈ propV and
SUFL formulas ϕ, ψ ∈ suflV , the semantics of SUFL with respect to a finite or
infinite word v ∈ XP(V)∗ ∪ XP(V)ω is defined as follows:

– v |=sufl b iff |v| = 0 or v0 |=xprop b
– v |=sufl b! iff |v| > 0 and v0 |=xprop b
– v |=sufl ¬ϕ iff v �|=sufl ϕ
– v |=sufl ϕ ∧ ψ iff v |=sufl ϕ and v |=sufl ψ
– v |=sufl Xϕ iff |v| > 1 and v1.. |=sufl ϕ
– v |=sufl ϕ U ψ iff ∃k. k < |v| s.t. vk.. |=sufl ψ and ∀j. j < k implies vj.. |=sufl ϕ
– v |=sufl ϕ ABORT b iff either v |=sufl ϕ or

∃j.j < |v| s.t. vj |=sufl b and v0..j−1�ω |=sufl ϕ

A word v satisfies a SUFL formula ϕ iff v |=sufl ϕ holds; a Kripke structure K
satisfies ϕ (denoted K |=sufl ϕ) iff all paths v ∈ IPath(K) satisfy ϕ.

Some standard syntactic sugar is defined for SUFL:

– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
– ϕ → ψ := ¬ϕ ∨ ψ
– ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)
– Xϕ := ¬X¬ϕ

– Fϕ := true U ϕ
– Gϕ := ¬F¬ϕ
– ϕ U ψ2 := ϕ U ψ ∨ Gϕ
– ϕ B ψ3 := ¬(¬ϕ U ψ)

1 Written as ϕ U ψ in [1].
2 Written as [ϕ W ψ] in [1].
3 Written as [ϕ BEFORE! ψ] in [1].

8 T. Tuerk, K. Schneider, and M. Gordon

All SUFL operators correspond to RLTL operators. A difference from RLTL is
that SUFL is able, in addition, to consider finite paths. Thus, for a propositional
formula b, a strong variant b! is introduced that does not hold for the empty word
ε, while every propositional formula b holds for the empty word. Analogously, X
is introduced as a strong variant of X. The semantics of X requires that a next
state exists, while Xϕ trivially holds if no next state exists. For the remaining
temporal operator U, a weak variant U is already available in RLTL. Apart from
finite paths, the meaning of the FL operators is the same as the meaning of the
corresponding RLTL operators. The role of the two special states �, ⊥ is played
by the acceptance/rejection conditions of RLTL.

2.5 ω-Automata

ω-automata were introduced by J. R. Büchi in 1960 [7]. They are similar to finite
state automata as introduced by Kleene in 1956 [18]. While finite state automata
decide whether a finite word belongs to some language, ω-automata decide this
property for infinite words. There are different kinds of ω-automata and some of
slightly different definitions. In this paper, we will use a symbolic representation
of nondeterministic ω-automata, which is closely related to the formalism of au-
tomaton formulas described in previous work [23]. For conciseness, some details
in this paper have been simplified.

Definition 9 (Symbolic Representation of ω-Automata). A symbolically
represented nondeterministic or universal ω-automaton over a set of variables V
is a tuple (Q, I, R, l) such that

– Q ⊆ V is a finite set of state variables,
– I and R represent a Kripke structure over V and
– l is a LTL formula over V called acceptance condition.

Symbolically represented nondeterministic ω-automata are often written in the
form A∃(Q, I, R, l), universal ones are denoted by A∀(Q, I, R, l). A run of some
input i ∈ P(V \Q)ω through A := A∃/∀(Q, I, R, l) is an infinite word r ∈ P(Q)ω

such that i ∪ r is a path through the Kripke structure represented by (I, R). The
input i satisfies the ω-automaton (denoted by i |=omega A∃/∀(Q, I, R, l)) iff for
at least one run / all runs r of i through A the path r ∪ i satisfies l. For inputs
that contain state variables, this definition is extended by restricting the inputs:
i |=omega A := i ∩ (V \ Q)ω |=omega A. As usual, a Kripke structure K satisfies
A (denoted K |=omega A) iff all paths i ∈ IPath(K) satisfy A.

An ω-automaton A := A∃/∀(Q, I, R, l) is called total, iff for all i, i′ ⊆ V \ Q,
s ⊆ Q a state s′ ⊆ Q exists such that i ∪ s′ |=prop I and i ∪ s ∪ Xi′ ∪ Xs′ |=prop R
holds. A is called deterministic iff for all i, i′, s an unique s′ with these properties
exists.

For all input paths there is exactly one run through a deterministic automa-
ton. Thus, the semantics of A∃(Q, I, R, l) and A∀(Q, I, R, l) coincide for deter-
ministic automata. Therefore, the notation Adet(Q, I, R, l) is used as well in the
deterministic case.

Model Checking PSL Using HOL and SMV 9

3 Translations

As already mentioned, all operators of the sublanguage SUFL of PSL correspond
to RLTL operators. As shown in previous work [26,25] these correspondences lead
to a very simple translation procedure from SUFL on infinite words to RLTL.

However, during this translation not only the formula itself but also the input
words have to be translated, because in contrast to RLTL, inputs for PSL may
contain the special states � and ⊥. The translation used considers only infinite
proper words [17]. An infinite proper word over V is an infinite word v ∈ XP(V)ω

such that ∀j. vj=� −→ vj+1=� and ∀j. vj=⊥ −→ vj+1=⊥ hold.
The set of all infinite proper words over V is denoted by XP(V)ω�⊥

. At first
glance, it may seem to be a restriction to consider only proper words, however,
this is not the case. Special states are just an auxiliary means used to explain
the semantics; they do not occur in practise and proper words are sufficient to
explain the semantics.

Theorem 1. With the definitions of Figure 1, the following are equivalent for
all f ∈ suflV , all infinite proper words v ∈ XP(V)ω�⊥

and all t, b /∈ V:

– v |=sufl f
– 〈RemoveTopBottom(t, b, v), t, b〉 |=0

rltl PSL TO RLTL f
– RemoveTopBottom(t, b, v) |=rltl ACCEPT(REJECT((PSL TO RLTL f), b), t)

If v does not contain � and ⊥, i. e. in case v ∈ P(V)ω, this can be simplified to:

v |=sufl ϕ ⇐⇒ v |=rltl PSL TO RLTL(ϕ)

RemoveTopBottom(t, b, v)j :=

��
�

{t} : if vj = �
{b} : if vj = ⊥
vj : otherwise

function PSL TO RLTL(Φ)
case Φ of

b : return b;
b! : return b;
¬ϕ : return ¬PSL TO RLTL(ϕ);
ϕ ∧ ψ : return PSL TO RLTL(ϕ) ∧ PSL TO RLTL(ψ);
Xϕ : return X

�
PSL TO RLTL(ϕ)

�
;

ϕ U ψ : return PSL TO RLTL(ϕ) U PSL TO RLTL(ψ);
ϕ ABORT b : return ACCEPT(PSL TO RLTL(ϕ), b);

end
end

Fig. 1. Translation of SUFL to RLTL

After the translation to RLTL, the formula can easily be translated further to
LTL. This translation step is due to [2].

10 T. Tuerk, K. Schneider, and M. Gordon

Theorem 2 (Translation of RLTL to LTL). With the definition of Figure 2,
the following holds for all infinite words v ∈ P(V)ω, all acceptance / rejection
conditions a, r ∈ propV , all RLTL formulas ϕ ∈ rltlV and all points of time t ∈ N:

〈v, a, r〉 |=t
rltl ϕ ⇐⇒ v |=t

ltl RLTL TO LTL(a, r, ϕ)

Obviously, this can be instantiated to:

v |=rltl ϕ ⇐⇒ v |=ltl RLTL TO LTL(false, false, ϕ)

function RLTL TO LTL(a, r, Φ)
case Φ of

b : return a ∨ (b ∧ ¬r);
¬ϕ : return ¬RLTL TO LTL(r, a, ϕ);
ϕ ∧ ψ : return RLTL TO LTL(a, r, ϕ) ∧ RLTL TO LTL(a, r, ψ);

Xϕ : return a ∨
�
X
�
RLTL TO LTL(a, r, ϕ)

�
∧ ¬r

�
;

ϕ U ψ : return RLTL TO LTL(a, r, ϕ) U RLTL TO LTL(a, r, ψ);
ACCEPT(ϕ, b): return RLTL TO LTL(a ∨ (b ∧ ¬r), r, ϕ);

end
end

Fig. 2. Translation of RLTL to LTL

IPath(K) ⊆ P(V)ω holds for all Kripke structures K over V . This leads to the
following corollary.

Corollary 1 (Direct translation of PSL to LTL). For all f ∈ suflV and all
Kripke structures K over V the following holds:

K |=sufl f ⇐⇒ K |=ltl RLTL TO LTL(false, false, PSL TO RLTL(f))

It remains to translate LTL to ω-automata. It is well known how this can be
achieved [30,5,13,9,12]. In this work, we use an algorithm by Klaus Schnei-
der [22,23] to translate LTL to the symbolic representation of ω-automata intro-
duced above. This algorithm is very similar to the one used in [27] to translate
LTL to alternating ω-automata.

Theorem 3 (Translation of LTL to ω-automata). For all LTL formulas
Φ ∈ LTLV and (Q, I, R, F , p) := TopPropσ(Φ), where TopProp is defined as in
Figure 3, the following holds:

– for σ = true and all v ∈ P(V)ω, the following holds:

v |=ltl Φ ⇐⇒ v |=omega A∃(Q, I ∧ p, R,
∧

ξ∈F
GF ξ)

– for σ = false and all v ∈ P(V)ω, the following holds:

v |=ltl ¬Φ ⇐⇒ v |=omega A∃(Q, I ∧ ¬p, R,
∧

ξ∈F
GF ξ)

Model Checking PSL Using HOL and SMV 11

function TopPropσ(Φ)
case Φ of

p : return ({}, true, true, {}, p);
¬ϕ : (Qϕ, Iϕ, Rϕ, Fϕ, pϕ) := TopProp¬σ(ϕ);

return (Qϕ, Iϕ, Rϕ, Fϕ, ¬pϕ);
ϕ ∧ ψ : return TopPropσ(ϕ) × TopPropσ(ψ);
Xϕ : (Qϕ, Iϕ, Rϕ, Fϕ, pϕ) := TopPropσ(ϕ);

q := new var;
return (Qϕ ∪ {q}, Iϕ, Rϕ ∧ (q ↔ Xpϕ), Fϕ, q);

ϕ U ψ : (QΦ, IΦ, RΦ, FΦ, pϕ∧pψ) := TopPropσ(ϕ)×TopPropσ(ψ);
q := new var;
RQ := q ↔ (pψ ∨ (pϕ ∧ Xq));
FQ := if σ then {q ∨ pψ} else {};
return (QΦ ∪ {q}, IΦ, RΦ ∧ RQ, Fϕ ∪ FQ, q);

end
end

Fig. 3. Translation of LTL to ω-automata [22,23]

4 Infrastructure

The HOL System [14,16] is an interactive theorem prover for higher order logic.
In this work the HOL4 implementation is used. The version of higher order logic
used in HOL is predicate calculus with terms from the typed lambda calculus [8].
The interactive front-end of HOL is the functional programming language ML,
in which terms and theorems of the logic, proof strategies and logical theories
are implemented. This language is used to implement the translations described
here and also to interface to SMV.

In earlier work, Gordon deeply embedded PSL in HOL [15], Schneider created
a shallow embedding of symbolically represented ω-automata and a shallow em-
bedding of LTL and verified a translation between these two embeddings [24].
Also, we have previously deeply embedded RLTL, LTL and symbolically rep-
resented ω-automata, and verified the translations described in Sec. 3 [25,26].
However, no automatic translations or other parts that could be used for tools
existed.

In this work, we describe such tools. In particular, we have implemented vali-
dating compilers for all the translations described here, i. e. we have implemented
ML-functions that translate an LTL term to an ω-automaton and also produce
a correctness proof of the generated automaton. Thus, possible bugs in these
implementations may only lead to exceptions and failing translations, but no
wrong results can be produced. In addition, we have implemented validating
compilers to convert model checking problems for SUFL and LTL to check the
existence of fair paths through a Kripke structure. For example, we can translate
the check K |=sufl f to a Kripke structure M and a set of propositional formulas
fc such that K |=sufl f ⇐⇒ IPathfair(M, fc) = ∅ holds. This emptiness check can
be handled by CTL model checkers that can handle fairness. In this work, we use

12 T. Tuerk, K. Schneider, and M. Gordon

the model checker SMV [19] and reuse an interface already developed in previous
work [24]. However, interfaces to other model checkers can easily be added.

As a result of this work, we can perform model checking for SUFL using HOL
and SMV. Assuming that SMV and HOL are correct, we have high confidence
that the whole tool is correct, since only the interface between HOL and SMV is
not verified and this interface is very small and simple.

Provably correct SUFL model checking is interesting in its own right as SUFL
is a significant subset of PSL and PSL is difficult to model check. PSL is a complex
language, so errors in designing and implementing model checking procedures
for it are potentially very easy to make. However, the main purpose of the work
reported here is to create a library of theorems and ML functions as a basis for
building special purpose tools. One example of such an tool is described in the
next section. This enables implementers of PSL tools to validate their code on
concrete examples with respect to the Version 1.1 PSL semantics.

5 Application: Validating a Translator from PSL to CTL

Our tool aims to validate how IBM’s model checker RuleBase [4] handles PSL.
RuleBase checks if a Kripke structure K satisfies a PSL specification f , by trans-
lating the specification f to a total transition system T = (Q, I, R) and a CTL
formula of the form AG p with propositional p. This translation is a blackbox
to us. Then K || T |=CTL AG p is checked. Neither CTL semantics nor this com-
bination of K and T are explained here, but note that K || T |=CTL AG p is
equivalent to K |= A∀(Q, I, R, G p). Thus, given f, Q, I, R and p one would like
to automatically prove

∀K. K |=omega A∀(Q, I, R, G p) ⇐⇒ K |=sufl f.

We are able to solve this problem for all SUFL formulas f with the library we
have developed. Moreover, clock operators can also be handled, since they can
be considered as syntactic sugar and eliminated by rewrite rules [1]. Thus only
regular expressions can not be handled. However, we have a preprocessing step
that tries to eliminate regular expressions by rewriting them to SUFL formulas.
Regular expression strictly increase the expressiveness of FL [28,29,25]. Thus, we
can not eliminate all of them. But luckily we can eliminate most of the regular
expressions occurring in practise.

It is of course vital to anybody using RuleBase with PSL specifications, that
the translation to CTL model checking is sound. However, we think our work
should be of interest to implementers of other model checking tools also. Note
that neither IBM’s translation nor our tool can handle full FL. Nevertheless,
the intersection between the subsets that our tool can handle and RuleBase can
handle is big enough to be interesting.

To implement a tool to solve the translation validation problem using our
library, formal translation (implemented by theorem proving) is used to convert
a PSL formula f to an equivalent LTL formula l. Then the quantification over the
models K is replaced by quantification over all paths i, which is equivalent for

Model Checking PSL Using HOL and SMV 13

this problem. A∀(Q, I, R, G p) is then translated to a deterministic automaton
Adet(Qdet, Idet, Rdet, G pdet), which is possible because the input automaton is
total [23]. Thus, the original problem is equivalent to

∀i. i |=omega A∀(Qdet, Idet, Rdet, G pdet) ⇐⇒ i |=ltl l.

This is in turn equivalent to (Idet, Rdet) |=ltl G pdet ↔ l. Thus, the library can be
used to translate the original problem to a LTL model checking problem, which
can be solved using the techniques described in Section 4. Moreover, all steps
needed for this translation to a LTL model checking problem are formally verified
in HOL. Therefore, we have an automatic tool to prove the correctness of the
translation for concrete examples.

We have validated several examples provided by IBM. Most of these exam-
ples can be verified in a few minutes, some take several hours. However, the
determinisation of the input automaton leads to an exponential blowup. Thus,
small PSL formulas may lead to huge model checking problems. However, we
have been able to show that the tool we developed is able to handle non toy
examples. Moreover, we have been able to detect an error in the translation of
the ABORT operator under clocks using it (though, unknown to us, this problem
was already known to the RuleBase developers).

6 Conclusions and Future Work

We have developed a library that allows us to handle a significant subset of
PSL using HOL and SMV. There are theorems about PSL and especially about
translations between PSL, LTL and ω-automata, and also ML-functions that solve
common problems automatically. Model checking problems of SUFL and LTL can
be tackled using these automatic procedures. However, the main purpose of the
library is to provide a basis to build tools that can handle special PSL problems.

We used the library to validate the handling of PSL by RuleBase. We were
able to show that our tool could handle interesting examples. Moreover, we were
even able to detect an error in IBM’s procedure.

A lot of implementation details could be improved. However, the main chal-
lenge will be to extend the subset of PSL. Adding regular expression strictly
increases the expressiveness such that the resulting subset of PSL can no longer
be translated to LTL [28,29,25]. However, it is possible to translate PSL directly
to ω-automata. There is an approach by Bustan, Fisman and Havlicek [6] which
translates PSL to alternating ω-automata. Another approach by Zaks and Pnueli
[21] translates PSL to symbolically represented automata. It would be interesting
to use this work to verify a direct translation to symbolically described nonde-
terministic ω-automata using HOL.

Acknowledgements

Thomas Tuerk’s visit to Cambridge is partly supported by an IBM Faculty
Award to Mike Gordon and partly by EPSRC grant GR/T06315/01. The prob-
lem of checking conformance of the PSL-to-CTL translation used by RuleBase

14 T. Tuerk, K. Schneider, and M. Gordon

with the semantics of PSL in the official standard was originally formulated by
Cindy Eisner and Dana Fisman of IBM, and we thank them for much helpful
advice and for supplying examples.

References

1. Accellera. Property specification language reference manual, version 1.1.
http://www.eda.org, June 2004.

2. Armoni, R., Bustan, D., Kupferman, O., and Vardi, M. Resets vs. aborts
in linear temporal logic. In Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS) (Warsaw, Poland, 2003), H. Garavel and
J. Hatcliff, Eds., vol. 2619 of LNCS, Springer, pp. 65–80.

3. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., and Rodeh,

Y. The temporal logic Sugar. In Conference on Computer Aided Verification (CAV)
(Paris, France, 2001), vol. 2102 of LNCS, Springer, pp. 363–367.

4. Beer, I., Ben-David, S., Eisner, C., Geist, D., Gluhovsky, L., Heyman,

T., Landver, A., Paanah, P., Rodeh, Y., Ronin, G., and Wolfsthal, Y.

RuleBase: Model checking at IBM. In Conference on Computer Aided Verifica-
tion (CAV) (Haifa, Israel, 1997), O. Grumberg, Ed., vol. 1254 of LNCS, Springer,
pp. 480–483.

5. Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. Sym-
bolic model checking: 1020 states and beyond. In Symposium on Logic in Com-
puter Science (LICS) (Washington, D.C., June 1990), IEEE Computer Society, pp.
1–33.

6. Bustan, D., Fisman, D., and Havlicek, J. Automata construction for PSL.
Technical Report MCS05- 04, The Weizmann Institute of Science, Israel, 2005.

7. Büchi, J. On a decision method in restricted second order arithmetic. In Interna-
tional Congress on Logic, Methodology and Philosophy of Science (Stanford, CA,
1960), E. Nagel, Ed., Stanford University Press, pp. 1–12.

8. Church, A. A formulation of the simple theory of types. Journal of Symbolic
Logic 5 (1940), 56–68.

9. Daniele, M., Giunchiglia, F., and Vardi, M. Improved automata generation
for linear temporal logic. In Conference on Computer Aided Verification (CAV)
(Trento, Italy, 1999), N. Halbwachs and D. Peled, Eds., vol. 1633 of LNCS, Springer,
pp. 249–260.

10. DeepChip survey on assertions. http://www.deepchip.com/items/dvcon04-
06.html, June 2004.

11. Emerson, E., and Clarke, E. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2, 3 (1982), 241–266.

12. Gastin, P., and Oddoux, D. Fast LTL to Büchi automata translation. In
Conference on Computer Aided Verification (CAV) (Paris, France, 2001), vol. 2102
of LNCS, Springer, pp. 53–65.

13. Gerth, R., Peled, D., Vardi, M., and Wolper, P. Simple on-the-fly automatic
verification of linear temporal logic. In Symposium on Protocol Specification, Test-
ing, and Verification (PSTV) (Warsaw, June 1995), North Holland.

14. Gordon, M. HOL: A machine oriented formulation of higher order logic. Tech.
Rep. 68, Computer Laboratory, University of Cambridge, May 1985.

15. Gordon, M. PSL semantics in higher order logic. In Workshop on Designing
Correct Circuits (DCC) (Barcelona, Spain, 2004).

Model Checking PSL Using HOL and SMV 15

16. Gordon, M., and Melham, T. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

17. Havlicek, J., Fisman, D., and Eisner, C. Basic results on the semantics of
Accellera PSL 1.1 foundation language. Technical Report 2004.02, Accellera, 2004.

18. Kleene, S. Representation of events in nerve nets and finite automata. In Au-
tomata Studies, C. Shannon and J. McCarthy, Eds. Princeton University Press,
Princeton, NJ, 1956, pp. 3–41.

19. McMillan, K. Symbolic Model Checking. Kluwer, Norwell Massachusetts, 1993.
20. Pnueli, A. The temporal logic of programs. In Symposium on Foundations of

Computer Science (FOCS) (New York, 1977), vol. 18, IEEE Computer Society,
pp. 46–57.

21. Pnueli, A., and Zaks, A. PSL model checking and run-time verification via
testers. In FM (2006), J. Misra, T. Nipkow, and E. Sekerinski, Eds., vol. 4085 of
Lecture Notes in Computer Science, Springer, pp. 573–586.

22. Schneider, K. Improving automata generation for linear temporal logic by con-
sidering the automata hierarchy. In International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR) (Havanna, Cuba, 2001),
vol. 2250 of LNAI, Springer, pp. 39–54.

23. Schneider, K. Verification of Reactive Systems – Formal Methods and Algorithms.
Texts in Theoretical Computer Science (EATCS Series). Springer, 2003.

24. Schneider, K., and Hoffmann, D. A HOL conversion for translating linear time
temporal logic to omega-automata. In Higher Order Logic Theorem Proving and its
Applications (TPHOL) (Nice, France, 1999), Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Théry, Eds., vol. 1690 of LNCS, Springer, pp. 255–272.

25. Tuerk, T. A hierarchy for Accellera’s property specification language. Master’s
thesis, University of Kaiserslautern, Department of Computer Science, 2005.

26. Tuerk, T., and Schneider, K. From PSL to LTL: A formal validation in HOL.
In International Conference on Theorem Proving in Higher Order Logics (TPHOL)
(Oxford, UK, 2005), J. Hurd and T. Melham, Eds., vol. 3603 of LNCS, Springer,
pp. 342–357.

27. Vardi, M. Branching vs. linear time: Final showdown. In Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (Genova,
Italy, 2001), T. Margaria and W. Yi, Eds., vol. 2031 of LNCS, Springer, pp. 1–22.

28. Wolper, P. Temporal logic can be more expressive. In Symposium on Foundations
of Computer Science (FOCS) (New York, 1981), IEEE Computer Society, pp. 340–
348.

29. Wolper, P. Temporal logic can be more expressive. Information and Control 56,
1-2 (1983), 72–99.

30. Wolper, P., Vardi, M., and Sistla, A. Reasoning about infinite computations
paths. In Symposium on Foundations of Computer Science (FOCS) (New York,
1983), IEEE Computer Society, pp. 185–194.

Using Linear Programming Techniques for

Scheduling-Based Random Test-Case Generation

Amir Nahir, Yossi Shiloach, and Avi Ziv

IBM Research Laboratory in Haifa, Israel
{nahir, shiloach, aziv}@il.ibm.com

Abstract. Multimedia SoCs are characterized by a main controller that
directs the activity of several cores, each of which controls a stage in the
processing of a media stream. Stimuli generation for such systems can be
modeled as a scheduling problem that assigns data items to the process-
ing elements of the system. Our work presents a linear programming
(LP) modeling scheme for these scheduling problems. We implemented
this modeling scheme as part of SoCVer, a stimuli generator for multime-
dia SoCs. Experimental results show that this LP-based scheme allows
easier modeling and provides better performance than CSP-based en-
gines , which are widely used for stimuli generation.

1 Introduction

Functional verification is widely acknowledged as one of the main challenges of
the hardware design cycle [1,2]. During the last few years, complex hardware
designs have shifted from custom ASICs toward SoC (system on a chip)-based
designs, which include ready-made components (cores). SoC-based designs are
dominant in multimedia applications. Many consumer products of this type,
such as digital cameras, web cameras, and DVD recorders and players, share
a common base structure. They include several cores, such as DSPs, encoders,
and decoders, which communicate through shared memory (or memories) and a
main microprocessor that controls and coordinates the entire system.

The verification of SoC-based designs for multimedia applications incorpo-
rates several challenges. Foremost is the need to verify the integration of several
previously designed cores in a relatively short time period. Typically, the sys-
tem’s embedded software is not fully written until fairly late in the development
cycle. Although several cores can work concurrently in such systems, the sys-
tem’s functionality enforces temporal constraints on the order in which the cores
carries out their tasks. This serves to compound the challenges faced.

Simulation is the main functional verification vehicle for large and complex
designs, such as multimedia SoCs [2]. Therefore, test case generation plays a cen-
tral role in this field. In recent years, technology has shifted towards constraint-
based modeling of the generation task and generation schemes driven by solving
Constraint Satisfaction Problems (CSP) [3]. In fact, leading verification environ-
ments, such as Specman [4] and Vera [5], and stimuli generation tools use CSP
solvers as the base for the generation engine.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 16–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using Linear Programming Techniques 17

Stimuli generation for multimedia SoCs often involves determining the time
at which various cores in the system process input items and transfer these items
from the system’s inputs to its outputs [6]. These scheduling problems can be
modeled as constraint satisfaction problems and solved using CSP solvers. In [6]
we presented a modeling scheme that does this and a tool named SoCVer, which
implements the scheme to generate high-quality stimuli for multimedia SoCs.

Scheduling problems appear in many places, such as scheduling jobs in a com-
puter system to maximize CPU utilization, and scheduling machine operation in
a factory to minimize operation costs. These types of problems also receive a lot
of attention in the research community [7]. While CSP can be used to model and
solve scheduling problems, other techniques such as linear programming (LP) are
considered more efficient in solving these problems [7]. With LP, the scheduling
problem is modeled as a set of linear inequalities whose solution provides the
required scheduling information.

In this paper, we provide a scheme for modeling the scheduling problem
for multimedia SoCs as a mixed integer program. While this modeling scheme
borrows ideas from traditional linear programming modeling techniques for
scheduling problems, it provides a new modeling framework. This new modeling
framework is designed to address the specific characteristics that are unique to
stimuli generation [3]. These characteristics include soft constraints that improve
the quality of the generated stimuli and the need to provide random solutions.
These two unique characteristics are handled in our modeling scheme via the LP
objective function.

We implemented the proposed scheme as an alternative modeling scheme in
SoCVer and combined it with a commercial solver to create an LP-based gener-
ation engine. We used a DVD Player SoC to compare this LP-based generation
engine to the CSP-based engine described in [6]. The comparison shows that the
LP-based engine has several advantages over the CSP-based engine. First, LP-
based modeling is more natural and more expressive than CSP-based modeling.
Second, the optimizations used by the LP solver enabled the LP-based engine
to generate stimuli faster and with a higher success rate.

The rest of the paper is organized as follows: Section 2 describes a DVD Player
SoC that is used as a running example. Section 3 presents the main challenges
in stimuli generation for the DVD Player SoC. In Section 4, we provide a brief
introduction to mixed integer programming and its main applications. In Sec-
tion 5, we describe our LP-based modeling framework. In Section 6, we compare
the LP-based and CSP-based solution schemes. Conclusions and directions for
future work are presented in Section 7.

2 The DVD Player SoC Example

We used a DVD Player SoC to demonstrate our LP modeling technique. Our
example focuses on the ‘Play’ operation for an MPEG-2 video stream. To clarify
the system’s complexity, we provide a brief description of the MPEG-2 format,
as well as the DVD Player SoC’s internal blocks and functions. The details

18 A. Nahir, Y. Shiloach, and A. Ziv

provided here set the background required to properly understand the examples
given in Section 5. We omitted many additional details about the DVD player’s
functionality for the sake of simplicity.

2.1 MPEG-2 Format

MPEG-2 is a standard for the coding of moving pictures and associated audio [8].
One of the main goals of this standard is to define the way data is compressed
to minimize the storage space required to hold the pictures. For this purpose,
the standard defines three possible ways to encode a single picture (frame):

– Intraframe (denoted ‘I’) - contains complete information that enables the
decoding of the frame independently of other frames. This encoding method
provides the lowest compression.

– Predicted frame (denoted ‘P’) – tells the DVD player how to decode the
frame based on the most recently decoded intraframe or predicted frame.
Using this method, the frame contains only the data that relates to how the
picture has changed from the previous intraframe.

– Bidirectional frame (denoted ‘B’) - to decode this type of frame, the player
must have information from the surrounding intraframes or predicted frames.
Using data from the closest surrounding frames, it uses interpolation to
calculate the position and color of each pixel.

An MPEG-2 video stream is a sequence of ‘I’, ‘P’, and ‘B’ frames. Usually, the
sequence of encoded frames appears as follows: ‘IPBB-PBB-PBB-IPBB’. (The
hyphens are only inserted for clarity — they are not part of the standard.) This
kind of sequence is displayed in the following order: ‘IBBP-BBP-BBP-IBBP’.

Figure 1 clarifies the MPEG-2 encoding standard: the three images in the top
row show a scene in which a car travels from left to right, revealing and hiding
the background view as it moves. The frames below each image show how the
image is encoded in MPEG-2. The leftmost frame is an ‘I’ frame and shows the
entire image. The rightmost frame is a ‘P’ frame, which includes motion vectors
that describe the motion of the car and some background details required to fill
in the space created by the car’s movement. The frame in the middle is a ‘B’
frame, based on the two adjacent frames. Using additional data provided within
the ‘B’ frame, the middle image on the top row can be recreated.

2.2 DVD Player SoC

The DVD player’s main tasks are to read the data from storage (DVD drive,
hard drive), decode the MPEG-2 encoded movie, and turn it into a standard
composite video signal. In addition to decoding the movie, the DVD player
decodes the movie’s soundtrack and subtitles (if requested). The DVD Player
SoC is depicted in Figure 2.

In our example, the DVD player’s actions are coordinated by a central con-
troller. This controller takes user actions delivered through the remote control
or control panel (‘Play’, ‘Pause’, ‘Fast Forward’, etc.) and implements them in

Using Linear Programming Techniques 19

Fig. 1. MPEG-2 illustration

the software as a sequence of commands issued by the controller to the various
modules.

The DVD player is composed of several internal modules (or cores):

– Input Stream Reader (ISR) - one of the DVD player’s peripheral modules,
which reads the data stream from the DVD drive or hard drive.

– Demultiplexer (DeMux) - receives the stream read by the ISR and converts
it into video images, audio track, and subtitles.

– MPEG Decoder Unit (MDU) - decodes the video images.
– Video Display Unit (VDU) - the DVD’s output unit. The VDU converts the

images created by the MDU into the display format (termed fields). Each
decoded image is converted into two fields. Whenever the VDU has no new
fields to display, the controller instructs the VDU to display the last two
fields again, causing the image in the viewer’s screen to freeze.

In addition to the main cores described above, the DVD Player SoC contains
several other sub-units. For example, the VDU contains a sub-unit called VDU-
Next, which assists the VDU in improving image quality. VDU-Next processes
the field that will be processed by the VDU at the following time-tick, unless
this field belongs to a different scene. Note that VDU-Next is idle whenever the
VDU is idle, but this only occurs at the beginning of operation. Figure 3 shows
an example of two scenes handled by the VDU and VDU-Next, where F i

j denotes
the j’th field of the i’th scene.

Each of the processed items (frames or fields) is stored in a main memory
module. To have one of the modules process an item, the controller first sets the
module to the required processing mode. The module then reads the item from

20 A. Nahir, Y. Shiloach, and A. Ziv

Fig. 2. DVD Player SoC structural block diagram

Fig. 3. Handling two scenes by the VDU and VDU-Next

memory, processes it, and stores it back in memory. Figure 4 depicts the data
flow within the DVD player when it plays an MPEG-2 video stream.

3 Stimuli Generation for the DVD Player SoC

One of the main challenges in the verification of multimedia SoCs, such as the
DVD Player SoC presented in the previous section, is the generation of inter-
esting scenarios that verify the interactions between the various cores in the
design. Controlling the various cores in the SoC and synchronizing their opera-
tion is done via the SoC’s main controller. Therefore, generating stimuli in the
form of “software” to the main controller is the best method for achieving high
quality stimuli [6].

With this generation scheme, the role of the stimuli generator is to convert a
set of operations in the test template file (e.g., “play - stop - play” for a DVD

Using Linear Programming Techniques 21

Fig. 4. ‘Play MPEG-2’ data flow within the DVD player

Player SoC) into commands given by the main controller to the various cores in
the SoC. These commands are, in fact, the driving element of the test, as opposed
to traditional verification environments where the test is primarily driven by the
system’s input.

To perform the operations requested by the user, the main controller needs to
activate the various cores in a specific order, with many constraints defining when
each core should start and finish its operation. In addition, the main controller
must manage the shared workspaces through which the cores communicate and
ensure that each work space is used properly (e.g., a data item is not over-written
before being consumed).

All of this can be translated into a scheduling problem that organizes the
operation of the various cores in the system and allocates areas in the shared
workspaces for the storage of data items. A solution for the scheduling problem
must adhere to many constraints. Some of these constraints are general and
typical to many scheduling problems. Examples are:

– The processing start-time of a data item in a specific core is constrained to
be greater than the processing end-time of this data item in the previous
core, as determined by the operation flow. In addition, in the time between
the end of processing in the previous core and beginning of processing in the
current core, the data item is stored in an entry in the shared workspace.

– The duration required to process a data item in a given core is expressed
as constraints relating the processing end-time and start-time of the data
item within the core. In contrast, no constraint is placed on the duration of
time a data item remains in a shared workspace, other than requiring that
its end-time be greater than its start-time.

Other constraints are imposed by the specific settings or behavior of the De-
sign Under Verification (DUV). The most prominent constraint of this kind
is mutual exclusion. This constraint indicates that each core can process only a

22 A. Nahir, Y. Shiloach, and A. Ziv

single data item at a time, and similarly, a shared workspace entry can hold
only one data item at a time. Other such behaviors can include the VDU’s
unique behavior of repeating old fields when no new fields are available, and the
dependency of VDU-Next on the VDU.

In addition to the constraints imposed by the specification of the system, users
can specify additional constraints as part of the test template. For example, users
can add a constraint requiring at least three time-ticks between the entry-time
of an input item to the MDU and its entry-time to the VDU.

To increase the quality of the generated test cases, expert knowledge of the
DUV can be incorporated in the form of non-mandatory (‘soft’) constraints.
Examples of such constraints include: requiring that the operation complete
within a minimum number of time-ticks, or giving priority to an odd number of
time-ticks between the entry-time of an item to the MDU and its entry-time to
the VDU.

Figure 5 depicts a solution to the ‘Play MPEG-2’ over an ‘IPBB’ stream
scheduling problem. On top of the basic operation, the test template contains
a directive that emulates a slow down in the rate at which frames arrive at
the ISR. This could represent a problem in the DVD reader. The input stream
flows from the ISR, through the DeMux to the MDU, where each unit processes
the frames whenever they become available. The handling by the VDU is more
complex. In addition to the VDU’s processing of fileds, there are other elements
that affect the processing by the VDU. First, the VDU starts handling the
data at the eighth time-tick because of a start-at-an-even-tick testing knowledge
directive. Second, the order in which the VDU processes the fields is different
from their arrival order because of the MPEG-2 reordering rule. Finally, the
VDU is required to repeat some of the fields because of the slow rate of data
arrival. When formulated as a CSP, such a scheduling problem consists of about
500 variables and over 3000 constraints, and takes the solver about one minute
to solve. (More detailed results are presented in Section 6.)

Fig. 5. ‘Play MPEG-2’ over an ‘IPBB’ stream scheduling solution

In previous work [6], we described SoCVer, a stimuli generator for multimedia
SoCs. SoCVer uses a CSP modeling scheme and a CSP solver to generate high-
quality stimuli for such systems. In this paper, we present a new modeling scheme
based on mixed integer programming. Before describing this modeling scheme,
we briefly introduce mixed integer programming.

Using Linear Programming Techniques 23

4 Mixed Integer Programming

A Linear Program (LP) is an optimization problem, that seeks the minimiza-
tion (or maximization) of a linear function, subject to linear constraints. The
development of linear programming has been ranked among the most impor-
tant scientific advances of the 20th century [7]. Today, linear programming is
a standard tool in the use of many applications in the industry. Mixed Integer
Programming (MIP), an extension of LP, requires that some of the variables are
assigned integer values. In this section, we provide a brief introduction to MIP.
In addition, we describe some of the applications of LP and MIP, along with the
basic algorithms for solving them.

4.1 Formal Representation

As noted above, MIP requires that some of the variables be assigned integer
values. In addition to the linear constraints, there may be additional restrictions
requiring that some of the variables be assigned with integer values as part of
the solution. Solving MIPs is an NP-Complete problem [9], hence, no known
algorithm is guaranteed to solve it efficiently (i.e., in polynomial time). In its
most general form, a MIP problem can be represented as:

Minimize
∑

xj∈Z

cjxj +
∑

yj∈R

cjyj

subject to:

∑

xj∈Z

aijxj +
∑

yj∈R

aijyj

⎧
⎨

⎩

≤
≥
=

⎫
⎬

⎭
bi, i = 1, . . .m

The function being minimized is called the objective function. The restrictions
are referred to as constraints. The size of a MIP problem is measured by three
parameters: the number of constraints, the number of variables, and the number
of non-zero aij coefficients in the constraints (termed non-zeros).

4.2 Common Uses

Linear programming, as well as its MIP extension, is commonly used in a great
number of applications. Examples include:

– Scheduling of shift workers – used to enforce business rules, minimize the
size of the workforce, plan the shifts (length and start hours), and maximize
worker satisfaction.

– Flow problems – assists in the design of all kinds of transportation and
communication networks.

– Packaging problems - used to determine the location of containers on ships.
– Time tabling – for example, used to construct a timetable for high school

students.

24 A. Nahir, Y. Shiloach, and A. Ziv

– Resource allocation – optimally assigns resources to tasks, for example, lec-
ture halls in a college, operating rooms in hospitals, and so forth.

– Finance – used to optimize stock portfolios, control risks, regulate markets,
and so forth.

And many, many more...

4.3 Relevant Algorithms

Simplex Method. The Simplex method [10] is an algorithm used to solve con-
tinuous linear problems (i.e., all the variables can be assigned fractional values).
Even though it does not adhere to integrality constraints, the Simplex method
is used as an internal procedure by all IP (and MIP) solvers, and is executed
thousands of times for each MIP instance. IP solvers use Simplex to test solu-
tions for feasibility and find bounds for the objective function value. The Simplex
method is an iterative procedure that begins at an arbitrary vertex of the feasible
solution polytope. This vertex is the intersection of several constraints (hyper-
planes). At each iteration, the Simplex method tries to improve the value of the
objective function by looking at the values of all adjacent vertices, where an
adjacent vertex is obtained by replacing a single constraint with another one. If
one or more such vertices are found, Simplex moves to the one that offers the
best improvement. In addition, the Simplex method can determine if no solution
actually exists.

Branch and Bound. Branch and bound [11] is the ‘classic’ method for solv-
ing IPs and MIPs. This method begins by finding the optimal solution to the
problem without the integrality requirements, known as the ‘relaxed’ problem,
via standard linear optimization methods (such as the Simplex method). If the
‘should-be integer’ variables all have integer values, the algorithm completes. If
one or more integer variables have non-integer values, the branch and bound
method picks one such variable and ‘branches’ on it, creating two new subprob-
lems. If the branching variable X received the value of 7.3, for example, the
original problem is enriched with two new constraints: X ≥ 8 and X ≤ 7. Ob-
viously, they cannot both be added to the original problem as they contradict
each other. In fact, each of the two new subproblems consists of the original con-
straints plus one of the above new constraints. The next step is to decide which
of the subproblems to solve first; this is referred as ‘choosing the direction’. Af-
ter deciding, the algorithm solves the subproblem and continues by choosing
the next variable to branch on and the subproblem to solve (or ‘which direction
to go’). The entire process of roaming the space of many subproblems (all of
which contain the original constraints), picking the next variable to branch, and
choosing the direction to go, can be viewed as traversing a giant search tree.
Even if an all-integer solution is found, the typical branch and bound algorithm
continues seeking a better integer solution (in terms of objective function value).
Most branch and bound computations do not achieve a global optimum, or do
not know when they have achieved it. They terminate because of time or value

Using Linear Programming Techniques 25

limits, or when the gap between the current solution and the lower bound on
the best possible solution is narrow enough.

Branch and Cut. The gap between the current solution and the lower bound
on the best possible solution can be narrowed in two ways: by improving the
objective function and by lifting the lower bound. The initial lower bound is the
value of the relaxed (continuous) problem. There are, however, methods to lift
the lower bound strictly above the relaxed solution value by introducing ‘cuts’.
A cut is an additional constraint that can decrease the space of the polytope
of feasible solutions without ruling out any integer solutions. There are several
techniques for obtaining such cuts. In the branch and cut algorithm [12], branch-
ing and cutting are done alternately according to a certain strategy. Usually the
MIP algorithm contains many parameters that control this strategy, including
the cutting method, the pivoting method (selecting the node to branch on), the
branching direction method, and the termination rule. Other parameters con-
trol some other heuristics that are involved in the search for optimal solutions.
All in all, when moving from LP to MIP, we move from mathematics to the
mathematically assisted art of search.

5 The MIP Model

We propose a novel technique to model scheduling problems. At the heart of this
technique lies the concept of processing functions. We decided to use processing
functions instead of traditional LP modeling schemes for scheduling problems
because they significantly simplify the representation of the constraints that are
unique to our scheduling problems, as presented in Section 3. In this section,
we provide a detailed description of this modeling scheme. We start by describ-
ing our modeling framework, then show how this framework can be used to
model temporal constraints and address the specific characteristics of stimuli
generation.

5.1 Modeling Framework

To explain the concept of a processing function, we must first provide several
related definitions. We use the term ‘job’ when referring to the processing of
an input item by one of the DUV’s cores or the storing of an input item in a
shared work space [6]. Note that in Operations Research (OR) vocabulary, jobs
are sometimes referred to as processes. For each job, we want to describe the
time-ticks at which this job is active. For example, in Figure 5, the job in which
the ISR processes the first I-frame is active at the first two time-ticks of the test.

To achieve the above, we allocate a vector of variables, each representing the
processing state of the job at a different time-tick. That is, Process[i] denotes
a variable that indicates if a job is active at time-tick i. We term such a vector
the Process function of the job.

26 A. Nahir, Y. Shiloach, and A. Ziv

To ease the modeling of the scheduling problem and assist the solver in effi-
ciently finding a solution, in addition to the processing function, we use three
more functions: Start, End, and Spike.

The Start function and End function are monotonically non-decreasing func-
tions. Both functions start at 0. The Start function changes to 1 when the job
begins processing and the End function changes to 1 immediately after the job
ends. Both functions maintain the value 1 from the point of change through the
remainder of time. Note that the Process function is defined as the difference
between the Start function and the End function. The Spike function is only
active at the first time-tick of the job’s processing and can be expressed by the
formula:

∀t, Spike[t] = Start[t] − Start[t − 1]

All variables defined so far, as well as the variables that will be defined later,
are indicator variables, and thus can only be assigned a value of 0 or 1. To
enhance solver performance, we relax some of these requirements and allow the
solver to assign some of the variables values in the range [0, 1]. This relaxation
does not affect the solution because relations among the variables implicitly force
the solver to assign them with integer values.

Figure 6 depicts an example of the four indicator functions of a single job.
The processing time of the job is between time-ticks three and five. The Start
function changes its value to 1 at time-tick three, and the End function changes
its value at time-tick six; both functions remain high thereafter. In contrast, the
Spike function is high only at time-tick three.

Fig. 6. An example of indicator functions for a single job

5.2 Temporal Scheduling Constraints

Based on the framework defined in the previous subsection, we can formulate
various temporal relations between different jobs. In [13,14,15], thirteen funda-
mental relationships between jobs are defined. All of these relationships can be
easily expressed as linear constraints within our framework. For example:

– Job A equals Job B - means Job A is active at the same time as Job B. This
relationship is expressed within our framework using the constraint:

∀t, P rocessA[t] = ProcessB [t],

Using Linear Programming Techniques 27

where ProcessA and ProcessB denote the Process function of jobs A and
B, respectively.

– Job A meets Job B - means Job B starts immediately after Job A completes.
The constraint for this relationship is:

∀t, EndA[t] = StartB [t]. (1)

– Job A overlaps Job B means that during at least one time-tick, both jobs
are active. To express this relationship, we define an auxiliary function in
the following manner:

MA,B[t] = min(ProcessA[t], P rocessB[t]),

where the minimum operator is implemented using a set of constraints. The
relationship itself is expressed using:

∑

t

MA,B[t] ≥ 1.

On top of the relative temporal relationships, absolute constraints can also be
expressed within our framework. For example, “the MDU starts processing the
I-frame at time-tick five” is simply expressed by the constraint:

Spike(MDU,I−frame)[5] = 1.

These constraints, which are related to the state of a single job, can be easily
extended to constraints related to the state of a resource. For example, “ISR is
busy at time-tick three” can be expressed by the constraint:

∑

j∈ISR

Processj [3] ≥ 1,

where j ∈ ISR denotes that job j is processed by the ISR.

5.3 Domain Specific Constraints

In addition to the generic temporal constraints presented above, scheduling prob-
lems for multimedia SoCs contain numerous other constraints that are specific
for this domain. These constraints can also be easily handled by our modeling
framework. The mutual exclusion constraint requiring that each agent processes
at most a single data item at any given time-tick can be simply expressed as the
set of equations:

∀Agent A, ∀t,
∑

j∈A

Processj [t] ≤ 1

In a similar fashion, constraints for managing the shared workspaces are ex-
pressed as the set of equations:

∀Shared Workspace S, ∀t,
∑

j∈S

Size(j) · Processj [t] ≤ Alloc(S)

28 A. Nahir, Y. Shiloach, and A. Ziv

where Size(j) denotes the size of the input item handled by job j and Alloc(S)
denotes the amount of memory allocated for shared workspace S. Note that both
Size(j) and Alloc(S) are known prior to the MIP formulation.

Optional jobs are another unique characteristic of our scheduling problems.
Optional jobs are jobs that could potentially be performed during the execu-
tion of the test case, but we cannot determine whether they’ll be performed at
the stage of problem formulation [6]. To handle the optional jobs, we add an
additional indicator variable for each optional job. This variable serves as an
existence indicator. That is, if the job executes, the solver sets the variable to 1,
otherwise to 0. In addition, we replace the following equation used to constrain
the job processing time for mandatory jobs:

∑

t

Processj [t] = Pj ,

with this equation: ∑

t

Processj [t] = Pj · Ej ,

where Pj is the processing time of job j and Ej is the existence indicator. There-
fore, if the solver determines that the optional job exists, the equation is essen-
tially the same as the equation for mandatory jobs. If the job doesn’t exist, the
job receives no processing time.

5.4 Stimuli Generation Requirements

The goal of constraint problem solvers is to find a solution that satisfies the
constraints or, more commonly, to find a solution that minimizes an objective
function. The requirements from a constraint solver for random stimuli genera-
tion are somewhat different [3]. Stimuli generators are required to generate many
different solutions from the same test specification. Therefore, they are required
to generate random solutions. In addition, instead of the traditional objective
function that indicates the quality of a solution, stimuli generators use soft con-
straints that represent testing knowledge. Adding these soft constraints to the
constraint problem improves the quality of the solution and thus the quality of
the generated test.

Traditional MIP solution techniques are not designed to address randomness
and soft constraints, and commercial MIP solvers do not have such capabilities.
We developed two novel techniques that utilize the objective function to add the
required capabilities to our framework.

Soft constraints are constraints the solver tries to fulfill if possible, but their
fulfillment is not mandatory. To handle soft constraints, we add indicator vari-
ables to each soft constraint, indicating whether this soft constraint is violated.
For example, the constraint Job A meets Job B of Eq. 1 is replaced by the soft
constraint

∀t, EndA[t] = StartB[t] + S+
j [t] − S−

j [t],

where S+
j [t] and S−

j [t] are the soft constraint indicator variables of soft con-
straint j at time t. If the soft constraint is fulfilled and Job A meets Job B, the

Using Linear Programming Techniques 29

equation holds by setting the indicator variables to 0. However, if Job A does
not meet Job B, by setting S+

j [·] and / or S−
j [·] to 1 at the time ticks where

the original constrint fails, the soft constraint equations still hold. These soft
constraint indicator variables are also added to the objective function with a
penalty factor. That is, the objective function will be of the form:

. . . + Pj ·
∑

t

(S+
j [t] + S−

j [t]) + . . . ,

where Pj is the penalty factor of soft constraint j. The higher the penalty factor,
the bigger the incentive of the solver to fulfill the soft constraint.

To add randomness, we randomly select a set of variables from the MIP and
add these variables to the objective function. When the MIP solver tries to
minimize the objective function, it tries to set the value of these variables to
0. A specific selection of the variables that are added to the objective function
direct the solver into a different area in the solution space. Because the variables
that are added to the objective function are selected randomly, each activation of
the solver generates a different random solution. Our experimental results show
that this technique indeed provides solutions that are significantly different from
each other. We are currently investigating how this technique compares with
techniques that are used to add randomness to CSP solvers.

6 Experimental Results

We implemented the framework described in Section 5 for the DVD Player SoC
described in Section 2 as an alternative generation engine in SoCVer [6]. We
compared this new generation engine with the CSP-based generation engine
described in [6]. The results of this comparison are presented in this section and
show that the MIP-based framework is better than the CSP-based framework.
Note that the results are not limited to performance, but include other criteria
such as expressiveness and scalability.

6.1 Expressiveness

In general, CSP is not limited to linear constraints, making it more flexible. On
the other hand, the ability to use a large number of variables and constraints in
the MIP formulation provides a better means to express temporal relationships.
For example, consider the temporal rule stating that the VDU must remain
active after its initial activation. In the CSP framework, this rule requires the
addition of CSP variables related to the VDU’s state over time, and complex
constraints linking the start and end variables with the new state variables. In
the MIP framework, the rule is simply expressed as:

∀t
∑

j∈V DU

Processj [t] ≥
∑

j∈V DU

Processj [t − 1].

A more complicated example is the relationship between the VDU and its
sub-unit VDU-Next. Recall that VDU-Next assists the VDU by processing the

30 A. Nahir, Y. Shiloach, and A. Ziv

field that will be processed by the VDU at the following time-tick, unless the field
belongs to a different scene (as illustrated in Figure 3). In the CSP framework,
this rule requires the addition of multiple constraints over both state and start-
end variables. In addition, specially tailored constraints guarantee that the jobs
executed concurrently by the VDU and VDU-Next are of the same scene. In the
MIP framework, we model this relationship using a set of constraints:

∀t
∑

j∈V DU−Next
j∈Scenei

Processj [t] = min

⎛

⎜
⎜
⎝

∑

j∈V DU
j∈Scenei

Processj [t],
∑

j∈V DU
j∈Scenei

Processj [t + 1]

⎞

⎟
⎟
⎠ .

Additional constraints determining the correct placement of jobs are based
on the temporal relationships described in Section 5.2.

6.2 Performance

We compared several characteristics of the CSP and MIP constraint problems
related to the same user request. The comparison was based on four different
tests, of varying levels of difficulty. Table 1 summarizes this comparison. For
each user request and each framework, the table shows the size of the constraint
problem in terms of the number of variables and constraints, the density factor,
the average time needed to solve the problem, and the success rate of each solver.
The density factor, an additional parameter for the complexity of the constraint
problem, is defined as the ratio between the sum of constraint degrees and the
product of the number of variables with the number of constraints.

The four user requests used for testing involve playing a short scene of four
frames (the first two test cases) and seven frames (the last two test cases). The
number of simulation time-ticks allocated for each test case is indicated by the
second parameter of the test name. For example, the first test case is allocated
18 time-ticks. Note that DUV-related rules require the use of all time-ticks.

The experiments were conducted on a Linux platform running on an Intel
Pentium 4, 3.6 GHz processor, with 2 GB memory. For the CSP framework, we
used an in-house solver designed for stimuli generation. This solver is used by
several other stimuli generation tools [16,17]. For the MIP framework, we used
ILOG’s CPLEX 10.0 solver [18].

The table shows that the number of variables in the MIP framework is much
larger than the number of variables in the CSP framework. In fact, it is roughly
the same as the number of variables in the CSP framework multiplied by the
number of time-ticks allocated for the solution. The number of MIP constraints
is also much larger than that of the CSP framework, by a factor of five to seven.
In spite of the big difference in problem sizes, the table clearly shows that the
average time needed to obtain a successful solution in the MIP framework is
much smaller, ranging from a factor of 20 for small problems, to about five for
the larger problems.

There are several reasons for the big difference in performance. First, MIP
solvers are based on highly efficient algorithms designed to deal with linear

Using Linear Programming Techniques 31

Table 1. Experimental results

Density Success Time to
Test Name Framework Variables Constraints factor (x10−3) Rate success

Play(IPBB,18) CSP 552 3077 7.43 100% 40.76
LP 9412 14429 0.59 100% 1.73

Play(IPBB,23) CSP 582 3260 7.52 90% 129.42
LP 12002 18469 0.46 100% 18.99

Play(IPBBPBB,28) CSP 945 7562 4.82 90% 529.99
LP 25410 39225 0.22 100% 90.75

Play(IPBBPBB,33) CSP 975 7795 4.88 40% 2181.20
LP 29920 46265 0.18 100% 400.08

constraints, while CSP solvers rely on more general, and less efficient, algorithms
because of the general nature of the constraints they need to handle. Second,
MIP solvers tend to fail (i.e., not find a solution in a bounded time) less often
than CSP solvers, as indicated by the sixth column in Table 1.

6.3 Scalability

The size of the problem, expressed by the number of variables and constraints,
grows fast in both frameworks with the number of jobs and time-ticks allocated
for the test case. In the CSP framework, the number of variables is O(jobs +
time) and the number of constraints is O(jobs2), while in the MIP framework,
there are O(jobs ·time) variables and constraints. While the MIP problem grows
quickly, its density decreases, as can be seen in the fifth column of Table 1 and
Figure 7. For the CSP framework, the density decreases with the number of

Fig. 7. Density factor for the CSP and MIP frameworks

32 A. Nahir, Y. Shiloach, and A. Ziv

jobs, but increases slightly with the allocation of additional time-ticks. Overall,
in both frameworks, increasing problem size in terms of jobs and time-ticks has
a significant effect on solver performance. This increase in problem size also has
a significant effect on the ability of the CSP solver to find a solution within a
bounded time.

7 Conclusions

We present a novel modeling scheme based on linear programming techniques
for scheduling problems. This new modeling scheme is designed to fit the unique
characteristics of stimuli generation, by providing random solutions and handling
soft constraints. Combining this modeling scheme with a commercial LP solver
provides a generation engine that is more expressive and outperforms generation
engines based on traditional CSP modeling.

We are looking into several interesting issues regarding the use of linear
programming techniques for stimuli generation. First, we are investigating the
amount of randomness provided by the LP solvers using the proposed model-
ing scheme and the effects of the solver’s parameters on randomness. Another
intriguing issue is the combination of LP techniques and CSP techniques in the
same generation engine and solver. We consider this a research topic that can
significantly improve generation capabilities, and more generally, enhance the
ability to solve more complex constraint problems.

References

1. Bergeron, J.: Writing Testbenches: Functional Verification of HDL Models. Kluwer
Academic Publishers (2000)

2. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The
Complete Industry Cycle. Elsevier (2005)

3. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formulation
and solution techniques for random test program generation. IBM Systems Journal
41(3) (2002) 386–402

4. Planitkar, S.: Design verification with e. Prentice Hall (2003)
5. Haque, F., Michelson, J., Khan, K.: The Art of Verification with Vera. Verification

Central (2001)
6. Nahir, A., Ziv, A., Emek, R., Keidar, T., Ronen, N.: Scheduling-based test-case

generation for verification of multimedia SoCs. In: Proceedings of the 43rd Design
Automation Conference. (2006)

7. Hillier, F., Lieberman, G.: Introduction to Operations Research. McGraw-Hill
Higher Education (2005)

8. ISO/IEC 13818-1: Generic coding of moving pictures and associated audio infor-
mation (2000)

9. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher,
J.W., eds.: Complexity of Computer Computation. Plenum (1972) 85–103

10. Dantzig, G.: Linear Programming and Extensions. Princeton University Press,
Princeton, N.J. (1963)

Using Linear Programming Techniques 33

11. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming
problems. Econometrica 28 (1960) 497–520

12. Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman
problems to optimality. Management Science 26(5) (1980) 495–509

13. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 11(26) (1983) 832–843

14. Ladkin, P.B., Maddux, R.D.: On binary constraint problems. Journal of the ACM
41 (1994) 435–469

15. Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning.
In: Proceedings of the Fourth National Conference on Artificial Intelligence. (1986)
377–382

16. Emek, R., Jaeger, I., Naveh, Y., Bergman, G., Aloni, G., Katz, Y., Farkash, M.,
Dozoretz, I., Goldin, A.: X-Gen: A random test-case generator for systems and
SoCs. In: IEEE International High Level Design Validation and Test Workshop.
(2002) 145–150

17. Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., Ziv, A.:
Genesys-Pro: Recent advances in test-program generation for functional processor
verification. IEEE Design & Test of Computers 26(2) (2004) 84–93

18. ILOG: Ilog cplex - high performance software for mathematical programming and
optimization. (http://www.ilog.fr/products/cplex/index.cfm)

Extracting a Simplified View of Design

Functionality Based on Vector Simulation

Onur Guzey1, Charles Wen1, Li-C. Wang1, Tao Feng2, Hillel Miller3,
and Magdy S. Abadir4

1 University of California, Santa Barbara
2 Cadence Desing Systems, Inc

3 Freescale Semiconductor Israel
4 Freescale Semiconductor

Abstract. This paper presents a simulation-based methodology for ex-
tracting a simplified view of design functionality from a given module.
Such a simplified design view can be used to facilitate test pattern justi-
fication from the outputs of the module to the inputs of the module. In
this work, we formulate this type of design simplification as a learning
problem. By developing a scheme for learning word-level functions, we
point out that the core of the problem is to develop an efficient Boolean
learner. We discuss the implementation of such a Boolean learner and
compare its performance with the one of best-known learning algorithms,
the Fourier analysis based method. Experimental results are presented to
illustrate the implementation of the simulation-based methodology and
its usage for extracting a simplified view of Open RISC 1200 datapath.

1 Introduction

Generating functional tests for a complex design can be a challenging task. For
processor verification, Random Test Program Generation (RTPG) is an effective
way to overcome the complexity [1]. In a recent work, the authors in [2] proposed
a learning-guided functional test pattern generation methodology. The main idea
of the methodology is illustrated in Figure 1.

A ATPG

B……

Extracting a simplified view

a

b

c

Fig. 1. Extracting a simplified view for module A to facilitate test pattern justification

Suppose our goal is to produce a test at the inputs of module A, for a target
contained in module B. The task is divided into two parts. First a sequential
ATPG is applied on module B to obtain a test at the inputs of the module. Then,

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 34–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extracting a Simplified View of Design Functionality 35

this test is justified to the inputs of module A by working on a simplified view of
the module. The objective of using such a simplified view is to avoid the com-
plexity of ATPG search in module A. A simplified view allows us to potentially
find a short-cut to map the test from the outputs of the module to its inputs. The
authors in [2] proposed to use statistical regression on input-output simulation
data of module A and extract a polynomial equation as the simplified model for
the input-output behavior of the module. However, statistical regression might
not work well on discrete and Boolean data.

The limitation of using statistical regression to extract a simplified view was
recognized in [3]. The authors in [3][4] then proposed separated learning methods
for learning bit-level logic functions and word-level arithmetic functions. These
methods were developed for constructing a simplified hybrid design view such
that (1) the view allows test justification to be done without ATPG search in
module A, and (2) the view approximates as closely as possible to the original
functionality of the module.

Although the objective of extracting a simplified view is clear in the context of
Figure 1, in all previously proposed methods, the idea of ”a simplified view” has
not been explicitly defined and explored. Previous methods try to learn from the
simulation data and develop a model that is as complete as possible to the input-
output behavior of the module. This can be an unrealistic goal. In theory, it is
unrealistic to expect that a good approximation of the entire functionality of a
design can always be learned based on input-output simulation data. As a result,
the performance of those methods on some cases can be quite unpredictable.

In this work, we propose a new method for extracting a simplified view from
a module. Our method achieves the intended design simplification by giving two
restrictions in the simulation-based learning: (1) We restrict the class of word-
level functions that can be learned. (2) We impose a bound on the complexity
of the Boolean functions that can be learned. Because of these restrictions, our
method does not intend to learn the complete functionality of a module. Instead,
it only tries to extract part of the functionality that fits within the capacity of
the learning scheme. This is quite different from the previous methods and allows
a more robust extraction methodology to be implemented.

In this work, we focus on developing the core engine for extracting a simplified
view. Application of the simplified view in test pattern justification is not ad-
dressed here, partly due to space limitation. In addition, such an application has
been discussed in previous works [2][3][4]. Although we spend most of the paper
discussing the learning algorithms for extracting a simplified view, we emphasize
that this work is only the first step to develop a robust functional test pattern
generation methodology illustrated in Figure 1 and proposed in [4].

Because a simplified view by nature is incomplete, test justification may not
always succeed through this view. Therefore, the proposed methodology in [4] is
not a complete solution but a complementary solution to the existing test genera-
tion flow based on deterministic search or on random test program construction.
Moreover, because the extraction method is simulation-based, the internal com-
plexity of module A is unimportant, as long as the module can be efficiently

36 O. Guzey et al.

simulated. This allows the proposed method to be built on top of existing sim-
ulation framework, which can be a crucial consideration in practice.

The rest of the paper is organized as the following. Section 2 briefly discusses
the background of this work. Section 3 presents an efficient Boolean learning
algorithm. Section 4 explains how Boolean learning can be extended to work in
the hybrid domain. Section 5 discusses word-level learning which is a required
component for hybrid learning. Section 6 presents experimental results with
hybrid learning. Section 7 concludes the paper.

2 Background

Refer to Figure 1 again. Suppose our goal is to extract a simplified view based
on a given word-level function ”c = a + b.” Module A may perform many other
functions but we are interested in only extracting the view based on the addition
function. Module A may be a sequential circuit. To simplify the problem, we
assume a known initial state to begin with and the input-output behavior to be
learned is based on a fixed number of timeframes. For some designs, the simplified
view may target input-output behavior across a fixed number of timeframes.
For others, we may fix the input values across multiple timeframes and target
on input-output behavior when the output values stabilize. In both cases, we
essentially turn the problem of learning a sequential design into a problem of
learning a combinational function.

Given three numbers a1, b1, c1, if we know the representation method, i.e. 2’s
complement or 1’s complement, it is easy to check if c1 = a1 + b1. Because
there are only a few popular representation schemes, we can try them one by
one to see if c1 = a1 + b1 holds for a particular scheme. Because given the
word-level data (a1, b1, c1), it is easy to check if the data match to the addition
function or not, the problem of extracting a simplified view with c = a + b
becomes the problem of deciding all combinations of the bit-level inputs (over
the fixed number of timeframes) where the addition function is performed. This
is a Boolean learning problem.

OBDD
structure

Addition
function

others

OBDD

1 0

Fig. 2. Boolean learning for extracting a simplified view

Figure 2 illustrates why the core of the problem is Boolean learning. In the
figure, the Boolean function is represented as an Ordered Binary Decision Dia-
gram (OBDD) [5]. In Boolean learning, our goal is to learn a Boolean function

Extracting a Simplified View of Design Functionality 37

y = f(x1, . . . , xn) based on simulation of a number of input vectors. On a given
vector, the output y takes value of 0 or 1. In Figure 2, on a given bit vector,
the output y takes two values: ”is performing an addition function” and ”is not
performing an addition function.” To decide on this value (for a given bit vector
on the bit-level inputs), we can try a few numbers (on the word-level inputs)
to obtain data (a1, b1, c1), . . . , (ak, bk, ck). If all of them are consistent with the
same addition function, then we can be pretty sure that the y value should be
the ”addition function.” Otherwise, it is not. In this way, we turn the problem
into a Boolean learning problem.

If we are given a set of predefined word-level functions {A1, . . . , Am}, then the
problem becomes learning a (m+1)-logic-value function. Again, for every bit vec-
tor sampled, we can try a few numbers to obtain data (a1, b1, c1), . . . , (ak, bk, ck).
Then, we need to be able to decide if any Ai function is consistent with the data
or not. Moreover, we should have at most one Ai that is consistent with the data
presented. This constrains the set of word-level functions that can be defined, i.e.
they should be easily differentiable based on a limited number of sampled data.
We note that for many commonly implemented logic and arithmetic functions,
they are easily differentiable. This point will be clarified when the discussion
moves to word-level arithmetic learning later.

Regardless if we are trying to extract a simplified view based on a single given
arithmetic function or a set of arithmetic functions, having an efficient Boolean
learning method is at the core of the extraction problem. The problem of learning
Boolean functions has been studied extensively since the pioneer work of L.
Valiant [6] and is at the core of machine learning research [7]. Valiant defined
a theoretical framework called Probably Approximately Correct (PAC) model.
In this model, a learned function g approximates a target Boolean function f
with an error probability ε → 0. Except for some special cases, most problems
formulated in Boolean learning were considered not efficiently PAC-learnable
[8][9], which usually involves proving that those problems are NP-hard.

It is important to note that in our work we are not trying to solve a Boolean
learning problem in PAC sense. PAC learning of Boolean functions has been
proved to be a computationally difficult problem. In our application, we do not
intend to learn a complete Boolean function and hence, we avoid solving such
a difficult problem. Our method emphasizes more on computational efficiency.
Given a resource limitation, our objective is to extract as much information
as possible from the simulation data. The learning may focus on learning the
Boolean function in a particular sub-space while ignoring other sub-spaces due
to resource limitations.

Refer back to the example of extracting a simplified view based on a given
addition function. Suppose that to have module A to perform addition, we have
to set 30 control lines into particular values and all other combinations enable the
module to perform other functions. Then, when these control lines are randomly
sampled, it is unlikely that the particular combination of values are sampled.
As a result, we may not have any sampled data that indicate that module A

38 O. Guzey et al.

is performing an addition function. Consequently, no simplified view can be
extracted and we may conclude that module A does not perform addition.

The above example illustrates that corner cases are not learned in the extrac-
tion process. This is an important feature of the methodology, where those cases
are ignored and in a sense, the design is simplified. Because the methodology
is based on sampling, only ”simple” functionality will be seen in the simulation
data. This simplicity is defined based on how easily it is to sample the input
values to observe a particular function.

Although our method is not to learn complete Boolean functions, for com-
parison purpose we implemented one of the most effective algorithms proposed
for learning Boolean functions, the Fourier analysis based learning method [10].
The algorithm attempts to approximate the coefficients in the Fourier repre-
sentation of a target function. Fourier representation of a Boolean function has
2n terms but in some cases the behavior of the function can be approximated
without calculating all terms in the transform. The authors in [10] describe an
algorithm that estimates all coefficients larger than a given threshold value θ.
For certain types of functions Fourier based learning perform quite well. For
example, using Fourier based learning, any constant-depth, polynomial-size cir-
cuit can be PAC-learned in run time bounded by O(npoly−log(n)) [10]. This is
the only sub-exponential bound known for learning this family of circuits. A
practical application of the algorithm was reported in a recent paper [11].

3 OBDD-Based Learning

To learn Boolean functions, we work with the OBDD representation. We first
restrict the number of nodes in each layer to be smaller than or equal to a given
number U . This number U controls the capacity of the learning machine. Figure 3
illustrates the basic idea in the algorithm.

…ix

1+ix

1x

ni xx ...2+ R random
samples

Fix an unique
path to the root

0 1

Fixed path

ignore

ignore

ignore

Fig. 3. Construction of a new layer

Suppose that we are learning a function of n input variables ordered as
x1, x2, . . . , xn. Suppose that the learner has constructed the OBDD up to the
variable xi and in the layer, there are di ≤ U nodes with label xi. Figure 3
depicts the method to construct the nodes in the xi+1th layer.

Extracting a Simplified View of Design Functionality 39

On variables xi+1, . . . , xn, R (uniformly) random postfix vectors are drawn.
For a node labeled xi and for each postfix vector, we follow a unique path from
the node to the root. In order to define the unique path from every node to the
root, every time the learner merges two nodes, it randomly picks an edge to its
parent and ignores the other edge. Then, every node has a unique edge to its
parent and hence, a unique path to the root. After this process, each xi node is
associated with R vectors whose xi value remain undetermined. We then expand
these R vectors into two sets of R vectors by filling xi with 1 and with 0. As
illustrated in the figure, on the layer xi+1 we have 2 ∗ di nodes and each node is
associated with R random vectors. Then, we simulate these 2 ∗ di ∗ R sampled
vectors to obtain their output values.

The result of simulation is a set of 2di vectors {−→v1 , −→v2 , . . . , −−→v2di}. Each −→vj ,
1 ≤ j ≤ 2di, is an R-bit wide vector. For any pair −→vj , −→vk, we need to determine
if −→vj = −→vk. If they are, we merge the two corresponding nodes into one node.
This checking and merging can be done by first sorting the 2di vectors and then,
scan the sorted result to merge nodes.

The basic algorithm has two important parameters, U and R. U determines
the maximum number of nodes allowed in any level of the decision diagram.
If there are more than U nodes at a particular level, some of these nodes are
merged by relaxing the merging rule until there are less than U nodes. This
can be done by checking ||vj ⊕ vk|| ≤ h for a given h = 1, 2, On a given h,
to check across all pairs of vectors is expensive. Hence, we only check for each
vj against w = 10, 20, . . . vectors that are closest to it in the sorted list. The
parameter U has a direct impact on the memory requirement and run-time of
the algorithm. If the actual OBDD satisfies the width constraint given by U , U
does not have any effect on the learning result. We note that those nodes merged
with others because of exceeding the width constraint can be viewed as those
nodes (functional sub-spaces) ignored in learning.

How a learned OBDD can differ from the actual OBDD for the function
to be learned? Given a prefix α on input variables x1, . . . , xi, let fα denote the
restricted function f(x1, . . . , xi = α). A learned OBDD can differ from the actual
OBDD in two ways, as illustrated in Figure 4.

fα

fα0 fα1

fαfα fα

fα0 fα1
fα0, α1

fα0, α1

fα00,α01

xi

xi+1

xi+2

true learned
true

learned

Erroneous merge
Erroneous split

Fig. 4. A learned OBDD may differ from the actual OBDD in two possible ways

– (Erroneous merge). In the actual OBDD, fα0 and fα1 are two separated
nodes. In the learned OBDD, they are merged into the same node (as a
result, it disappears in the final OBDD structure). This is due to the lack

40 O. Guzey et al.

of a witness vector to differentiate the two restricted functions during the
sampling of random vectors. Hence, the learner may conclude, based on what
it sees on the simulation result, that fα0 = fα1.

– (Erroneous split). An erroneous merge may cause an erroneous split as
shown in the figure. For example, in the actual OBDD, there are no nodes
that correspond to the variable xi+2. However, because the learner erro-
neously merged fα0 and fα1 into f{α0,α1}, when it tries to decide on the
variable xi+2, it may see samples to differentiate f{α0,α1}0 from f{α0,α1}1.
This is because fα00 �= fα11 and fα10 �= fα01. But after the erroneous merge,
the learner would not know that the difference is actually caused by xi+1
and not by xi+2.

We note that in our algorithm, erroneous merges are possible but erroneous
split is avoided by following a unique path from each node to the root during
sampling. Because of this feature, we can prove that a learned OBDD is always
smaller in size than the actual OBDD. When they are in the same size, they
are equivalent. The proof is omitted due to space limitation. This is a desired
property of the algorithm because with a larger R, a learned OBDD cannot
become smaller in size. If R is large enough, we ensure that the actual OBDD
can be eventually learned.

3.1 Experimental Results

To assess the effectiveness of our Boolean learning algorithm, we compare its
performance to the Fourier analysis based learning method. The performance
is evaluated based on combinational benchmark circuits. The reader may won-
der why we chose combinational circuits for evaluation while our objective is to
learn complex sequential designs. There are two reasons. Firstly, both Boolean
learning algorithms are for learning Boolean functions. There is no notion of
time in these algorithms. To be applied on a sequential design, as mentioned
before, we would need timeframe expansion. Hence, there is no real advantage
to evaluate the performance on sequential designs than on combination circuits.
For simplicity, we took combinational circuits for the evaluation. Secondly, as
far as a learning algorithm concerns, it only sees the input-output behavior of a
black box. Hence, it is the complexity of this IO behavior that matters. Internal
complexity is irrelevant. Hence, we can think of a combinational circuit as an
example where the IO behavior is of the particular function but the internal
implementation can be as complex as we want. From this perspective, the com-
binational circuits represent difficult enough cases to compare the performance
of the two algorithms.

Two obvious criteria to evaluate the performance of a learning algorithm is
its run-time and learning accuracy. Run-time can be divided into learning time
spent by the learner and simulation time spent by the simulator. The learner is
integrated with a commercial Verilog simulator.

For learning accuracy, we define two metrics. Let ||OBDD|| denote the num-
ber of min-terms in the function represented by the OBDD. The learning error

Extracting a Simplified View of Design Functionality 41

between a learned OBDD obdd and its actual OBDD OBDD can be defined as
ε = ||obdd ⊕ OBDD||/2n where n is the number of input variables. Because we
do not know OBDD, we often estimate the empirical learning error based on a
set of randomly-produced m input patterns. We denote this empirical error εm.

In the experiments, εm is calculated based on randomly generated 10k input
vectors. Let M0 be the number of vectors that the actual function gives output 1
and the learned OBDD reports output 0. Let M1 be defined reversely. Define ε0 =
M0/10k and ε1 = M1/10k. We calculate the empirical learning error ε10k = ε0+ε1

2 .

Table 1. Results of OBDD learning

Circuit tavg #nodes Accu. Circuit tavg #nodes Accu.

c432 1 280 99.77%* c499 12 3458 99.3%*

c880 2 181 99.98%* c2670 8 28 98.14%

c1908 3 633 99.76%* c5315 67 1519 94.61%

c3540 48 6770 95.02%* c7552 44 362 99.52%

c6288** 2 227 100% too large 38 5290 98.5%

Average simulation time per output: 873s

tavg : average learning times across all outputs (in secs), excluding simulation

#nodes: average # of OBDD nodes (learned) over all outputs

Accu.: average empirical accuracy (1 − ε10k) over all outputs

*Accuracy computed based on actual error ε, against actual OBDDs

**c6288: only the 8 most significant bits

Table 1 shows the experimental results for the proposed algorithm. In Table 2
we also present results obtained by an implementation of the Fourier analysis
based learning method. In Table 1 we used sample size limit R = 512 and OBDD
width bound U = 2048. To be consistent in Fourier learning, in Table 2, the
coefficient bound θ is set at θ = 0.06 for all experiments. We selected this number
based on running several preliminary experiments on various benchmarks and
observing the performance of the learner. For Fourier learning since we do not
have the actual Fourier representation, all accuracy results are empirical.

Experimental results show that the learning accuracy of our Boolean learner
is comparable to or better than Fourier analysis based learning method.

3.2 Experimental Results in the Restricted Input Space

When the OBDD width bound U is reached, some nodes are merged with others
even though they represent different sub-functions. Figure 5 illustrates the situa-
tion. The ignored nodes represent sub-spaces ignored in learning. In Table 1 above,
we do not differentiate between the sub-space being learned and the sub-space be-
ing ignored. Each learned OBDD is treated as the representation for the entire
space during the evaluation of the empirical error ε10k. We can focus the evalua-
tion on the sub-space that is actually learned and report accuracy result based on
the sub-space only. Table 3 shows the result for every output of the example c3540.

The unrestricted accuracy is calculated based on the entire space. The re-
stricted accuracy is calculated based on the sub-space being learned. The ratio

42 O. Guzey et al.

Table 2. Results of Fourier learning

Circuit tavg #Coffs Accu. Circuit tavg #Coffs Accu.

c432 33 53 69.10% c499 5 1 99.00%

c880 21 29 85.00% c2670 175 4 90.5%

c1908 5 8 99.70% c5315 115 37 87.00%

c3540 18 31 85.6% c7552 277 26 89.4%

c6288** 121 47 74.71% too large 15 19 49.9%

Average simulation time per output: 824s

tavg : average learning times across all outputs (in secs), excluding simulation

#Coffs: average # of Fourier coefficients (learned) over all outputs

Accu.: average empirical accuracy (1 − ε10k) over all outputs

Accu.: ε10k computed based on 10k randomly generated input vectors

**c6288: only the 8 most significant bits

OBDD

1 0

Width bound U …

Nodes merged with others
Sub-spaces ignored in learning

Fig. 5. Sub-spaces ignored in learning due to OBDD width constraint U

of the learned sub-space to the entire space is also reported as a percentage.
It is interesting to observe that in the learned sub-space, high accuracy can be
achieved. However, in some cases the learned sub-space is quite small. Achieving
high learning accuracy in the sub-space being actually learned is a desired result

Table 3. Learning accuracy within restricted input-space for individual c3540 outputs

Unrestricted Restricted % of Unrestricted Restricted % of
Accu. Accu. learned space Accu. Accu. learned space

1 100 100 100 12 99 99 20.5

2 100 100 100 13 100 100 100

3 99.5 100 99.5 14 100 100 100

4 100 100 100 15 100 100 100

5 100 100 100 16 97.5 99 35.7

6 99 99 73.7 17 93.5 100 31.3

7 97.5 100 100 18 94.5 100 37.2

8 100 100 100 19 98.5 99 20.2

9 100 100 100 20 97.5 99.5 42.9

10 100 100 100 21 55 95 2.3

11 97.5 100 76.2 22 54 97.5 4.5

Extracting a Simplified View of Design Functionality 43

for our learning method. As emphasized before, we do not intend to learn the
entire function. With a resource constraint U , we care more about the learning
effectiveness in the sub-space that is actually being sampled and learned.

4 Extending Boolean Learning to Hybrid Domain

In this section we extend the Boolean learner to work with word-level variables.
Suppose x1, . . . , xn are bit-level inputs and op1, . . . , opm are word-level inputs.
Let out be the word-level output. To apply the learner, we order these inputs
as x1, . . . , xn, op1, . . . , opm and the decision graph is constructed with all the
Boolean variables first.

Let α be a prefix vector on the bit-level input variables, which leads to a
node fα in the learned OBDD. Essentially, the learner checks if fα0() = fα1()
by drawing R sample vectors. In Boolean learning, the results are two R-bit
vectors and the learner believes fα0() = fα1() if the two vectors are the same.
In word-level learning, each vector consists of R k-bit numbers where k is the
number of bits in out. Again, the learner believes fα0() = fα1() if two vectors
are the same. The difference between comparisons made for Boolean and hybrid
learning is illustrated in Figure 6.

1 0 1 … 1 0 1 1

1 0 1 1 1 0 … 1 1 0 … 1 1 1 1 … 0

0 1 0 0 1 1 … 0 1 1 … 1 1 1 0 … 0

0 0 1 0 0 0 … 0 1 0 … 1 0 1 1 … 1

1 1 1 0 0 0 … 1 1 1 … 0 0 0 1 … 1

0 1 1 0 0 0 … 1 1 1 … 1 0 0 1 … 1

1 1 0 0 1 1 … 0 1 1 … 1 1 0 0 … 0

0 1 0 … 1 1 1 0

0 0 1 … 1 0 0 1

0 0 1 … 1 0 1 1

1 1 0 … 1 1 0 0

1 0 1 … 1 1 1 1

1 1 1 … 0 0 0 1

0 1 1 … 1 0 0 1

Boolean
variables

fα0

fα1

variable ordering

output

0 0 1 1 1 0 … 1 1 0 … 1 0 0 1 … 0

1 0 1 0 0 0 … 0 1 0 … 1 0 1 1 … 1

Boolean
variables

word-level
variables

fα0

fα1

variable ordering

outputs

Hybrid LearningBoolean Learning

Fig. 6. Illustration of difference between Boolean and hybrid learning

When the learner stops at the (n + 1)th layer, there may be more than
two nodes in the layer. Hence, the result is an ordered multi-terminal decision
diagram (OMDD). Each terminal node represents a unique function h where
out = h(op1, . . . , opm). After building the OMDD we can then use word-level
learning methods to extract the functionality of each terminal individually.

With some of the terminal nodes, word-level learning may fail to decide the
functionality because of its complexity. Then, those nodes are ignored in learn-
ing. In word-level learning, we apply two methods: (1) template matching and
(2) polynomial interpolation. The capacity of the word-level learner is limited by
the availability of predefined functions in the template library and by the high-
est degree number allowed in the polynomial representation. In other words,

44 O. Guzey et al.

the total number of word-level functions recognized by the word-level learner is
limited. Because of this, the learner can perform efficiently.

One interesting thing to note is that the capacity of the word-level learner does
not affect bit-level learning. When the learner works on the Boolean variables
x1, . . . , xn, it does not need to know what word-level functions are available
for matching. The word-level learning only applies after the bit-level learning
completes the decision graph up to the n + 1 layer.

5 Learning Word-Level Functions

In this section, two word-level learning methods are presented. Template match-
ing and polynomial interpolation are selected because they can learn restricted
set of functions with high accuracy. Additionally both of these methods generate
results that can be easily used for justification. We accept the fact that these
methods may fail if the target functions are very complicated. In the section 6
we show that these methods can be powerful enough to extract most of the
functionality of a practical design with high accuracy.

The capacity of the word-level learner is limited by the availability of the func-
tions in the template library and the polynomial representation. Many functions
may fall out of this scope. However, we do not want to go for a more compli-
cated learning method, for example neural network with Radial Basis Functions
(RBFN) [12]. Using RBFN may learn more complex functions but the results
may not be easily used in justification. In our word-level learning method, im-
proving the capacity of the learner is done by adding more predefined functions
in the template library.

5.1 Template Matching

Some common word-level functions can be seen in many designs. We use a tem-
plate library to include such known functions. Matching these functions with
given simulation data can be done easily. For example, we include all bit-wise
logical operations such as bit-wise AND, OR, NOR, etc. as well as simple arith-
metic functions like addition, subtraction, multiplication, and division. In addi-
tion, high-degree polynomials can be included to take care of special cases that
are out of the scope of polynomial representation.

As mentioned before, all functions in the template should be easily differen-
tiable by checking with a small number of simulation samples. This means that
we cannot have two functions that are too similar to be added to the template.
The similarity of two functions can be defined based on drawing, for example,
100 random inputs to the functions. If their outputs are all the same, they are too
similar. From this perspective, we see that most of the commonly implemented
word-level functions are not similar. An example of a pair of similar functions
can be an adder and an adder with exception control. For most inputs, these two
adders behave the same. Only some special inputs cause the exception handling
in the second adder to activate and produce non-addition outputs. Then, these
two adders may not be easily differentiable by random sampled inputs.

Extracting a Simplified View of Design Functionality 45

5.2 Multivariate Polynomial Interpolation

Multivariate polynomial interpolation is the process of determining polynomials
over several variables from their values at selected points. Any multivariate poly-
nomial with degree lower than a predetermined value, d, can be learned from a
relatively small number of observations. Methods for interpolating dense polyno-
mials have been known for a long time, yet development of methods for efficiently
interpolating sparse multivariate polynomials have been more recent [13][14].

Assuming d is the maximum degree of any variable in the polynomial. A
polynomial can have up to (d + 1)n terms where n is the number of variables.
If the number of terms in the polynomial is close to this limit it is called a
dense polynomial, otherwise it is a sparse polynomial. We use capital letters for
variables and non-capital letters for value assignments. xn,0 denotes a particular
random value assigned to the nth variable. We will describe a sparse interpola-
tion algorithm and discuss its implementation but before that dense univariate
interpolation, which is used in sparse multivariate case, is summarized.

In dense univariate interpolation, a polynomial with a single variable is inter-
polated from its values at d+1 distinct points. Lets call the values of the variable
chosen x1 . . . xd+1 and the polynomial’s values p1 . . . pd+1. Coefficients of the poly-
nomial, c0 . . . cd can be found by solving the following Vandermonde system:

c0 + c1x1 + . . . + cd(x1)d = p1
c0 + c1x2 + . . . + cd(x2)d = p2

...
c0 + c1xd+1 + . . . + cd(xd+1)d = pd+1

This system is non-singular if values x1 . . . xd+1 are distinct.
Sparse interpolation algorithm works by starting with a single variable and

introducing a new variable at each stage. The first stage is the same as the dense
univariate interpolation. At each stage variables that have not been processed
stay the same. First P (X1x(2,0), . . . x(n,0)) is determined. This requires d + 1
values which are results of the assignments, P (x(1,0), x(2,0), . . . x(n,0)) ... P (x(1,d),
x(2,0), . . . x(n,0)). From these values we can interpolate the polynomial P (X1, x1,0,
x2,0, . . . xn,0) using univariate dense interpolation.

Assume that first i stages have been completed and we are ready to determine
the polynomial P (X1 . . . Xi, Xi+1, x(i+2,0) . . . x(n,0)) . We choose i values for the
first i variables, Yi = x(1,k), . . . x(i,k). We also choose d+1 values for the variable
we are working on, Zi = x(i,1) . . . x(i,d+1). For each of these d + 1 assignments
we calculate a polynomial by interpolating following values:

P (1, . . . 1, x(i+2,0) . . . x(n,0))
P (x(1,k), . . . x(i,k), x(i,1), x(i+2,0) . . . x(n,0))

P ((x(1,k))2, . . . (x(i,k))2, (x(i,1))2, x(i+2,0) . . . x(n,0))
...

P ((x(1,k))T , . . . (x(i,k))T , (x(i,1))T , x(i+2,0) . . . x(n,0))

46 O. Guzey et al.

We solve the transposed Vandermonde system these values form to get the
polynomial P (X1 . . . Xi, x(i+1,1), x(i+2,0) . . . x(n,0)). If the same steps are followed
for the other d values in Zi we will have d+1 such polynomials. These polynomials
may look like:

c(1,1)P1(X1 . . .Xi) + . . . + c(t,1)Pt(X1 . . . Xi)
...

c(1,d+1)P1(X1 . . .Xi) + . . . + c(t,d+1)Pt(X1 . . .Xi)

where c(1,d+1) is the coefficient of polynomial P1 for x(i+1,d+1). Notice that there
are a total of t such polynomials because we assume the polynomial is sparse an
has less than maximum number of terms possible.

Key point of the algorithm is noticing that in these d + 1 polynomials each
coefficient can be regarded as a different polynomial. For example coefficient
c(1,1) is the value of the univariate polynomial in Xi+1 with assignment x(i+1,1).
Since we have d + 1 such coefficient values we can use univariate interpolation
to derive a polynomial. After all t polynomials are determined then we can get
P (X1 . . . Xi, Xi+1, x(i+2,0) . . . x(n,0)).

Although basic algorithms are summarized here, there are more issues that
cannot be discussed because of space constraints, for a more throughout discus-
sion on polynomial interpolation interested readers are directed to [15][14][16].

6 Hybrid Experimental Results

In this section, we illustrate an application of the hybrid learner for automatic
extraction of a simplified view on OpenRISC 1200 datapath [17]. OpenRISC
1200 is an open source processor core. The current design is a 32-bit scalar
RISC with Harvard micro architecture and a 5-stage integer pipeline supporting
52 core instructions.

The ALU performs arithmetic, logic, comparison and shift/rotate operations.
Based on its instruction set architecture (ISA), we know that 30 core instructions
can produce signal activities on the ALU. The ALU module has 120 inputs and
contains a 32-bit output bus out. The 120 inputs contain three 32-bit buses to
take three operands op1, op2, op3. The remaining 24 input bits are control signals.

Table 4. Learning result for RISC 1200 ALU module

Empirical learning accuracy

Word-level evaluation metric (1 − ε2k) 83.7%

Bit-level evaluation metric (1 − ε2k) 95.6%

For the Boolean part we set U = 2048. For the experiment, R = 512 and
R = 64 gave the same results. For the word-level part first we do polynomial in-
terpolation with d = 3. Next step is template matching which filters out bitwise

Extracting a Simplified View of Design Functionality 47

24 layers corresponds to 24 bit-level signals
15 word-level

functions

dummy
root

Fig. 7. Execution paths of ALU, automatically extracted

operations. For word-level output variables we calculate two different empiri-
cal learning accuracy numbers, one based on treating all 32 bit outputs as a
whole (word-level accuracy) and the other based on treating all 32 bit outputs
individually (bit-level accuracy). Table 4 shows learning results including both
word-level and bit-level empirical accuracy.

Figure 7 shows the OMDD result on the ALU, where the functionality consists
of 15 word-level functions. 5 of these were extracted through polynomial inter-
polation and others are through template matching. The run-time was about
2.5 minutes and more than 2 minutes were spent in simulation. It is interesting
to note that the ALU actually can perform additional custom-defined complex
functions. However, those complex functions are left out in this simplified view.

7 Conclusion

This paper presents a simulation-based method for extracting a simplified view
from a design. At the core of this method we implement an OBDD-based Boolean
learning engine. The capacity of the Boolean learner is restricted by a width
bound U . This limits the functions that can be completely sampled and learned,
and also constrains the learner to work on only a sub-space when the function to
be learned is too complex. The Boolean learner is integrated with a word-level
learner that is based on template matching and polynomial interpolation. The
word-level learner does not intend to learn all word-level functions. Our goal is
to learn commonly used functions. The capacity of the arithmetic learner can
be extended by adding the more pre-defined functions in the template.

We provide experimental results to show that the Boolean learner can handle
complex Boolean functions well, based on a number of combinational bench-
marks. Hybrid learning is naturally built on top of the Boolean learning. We
applied hybrid learning to extract a simplified view on the datapath of Open
RISC 1200 processor. Although this is a rather simple design, compared to

48 O. Guzey et al.

industrial high-performance processors, the result serves as a proof of concept
for the proposed method to extract a simplified design view.

The hybrid learner serves as a critical building block for realizing the method-
ology proposed in [4] in practice. The proposed method may have other appli-
cations yet to be explored. However, the most obvious application of using the
simplified view is to facilitate test pattern justification as illustrated in Figure 1.
For that purpose, we need to develop several other components: (1) A sequen-
tial data mining engine is needed to identify input-output signals at certain
timeframes, which should then be learned together with the proposed method.
This data mining engine should serve as the front-end of the learning method
in this work which has no notion of time in learning. (2) An interface to inte-
grate a sequential ATPG with test justification based on the simplified design
view is required. (3) Justification of values assigned to multiple outputs based on
multiple learned models needs further elaboration when some of them are word-
level outputs and some of them are bit-level outputs. Moreover, we will need
to demonstrate that the overall methodology works well on complex sequential
designs while sequential ATPG does not. We plan to pursue these directions in
the immediate future.

References

1. A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka, C. Metzger, M.
Molcho, and G. Shurek, ”Test Program Generation for Functional Verification of
PowerPC Processors in IBM,” Proc. DAC, pp. 279-285, 1995.

2. L. Chen, S. Ravi, A. Raghunathan, and S.Dey, ”A Scalable Sofware-Based Self-
Test Methodology for Programmable Processors,” Proc. Design Automation Conf,
Anaheim, pp. 548-553, 2003.

3. C. Wen, L.-C. Wang, K.-T. Cheng, W.-T. Liu, and C.-C. Chen, ”On A Software-
Based Self-Test Methodology and Its Application,” Proc. VLSI Test Symp., Palm
Springs, pp. -, 2005.

4. C. Wen, L. Wang and K.-T. Chang, ”Simulation-Based Functional Test Generation
for Embedded Processors,” to be accepted in IEEE Transaction on Computer,
2006.

5. R.E. Bryant. ”Symbolic Boolean Manipulation with Ordered Binary- Decision Di-
agrams,” ACM Computing Surveys vol.24, no.3,pp 293318, 1992

6. L. Valiant, ”A theory of the learnable,” Communications of the ACM, vol. 27,
no.11, pp.1134-1142, 1984.

7. M. J. Kearns, and U. V. Vazirani. An Introduction to Computational Learning
Theory. The MIT Press, 1994.

8. M. Kearns, M. Li, L. Pitt and L. Valiant, ”On the learnability of Boolean formulae,”
Proc. 19th Symp. on Theory of Computing, pp. 285-295, 1987.

9. M. Kearns, and L. Valiant, ”Learning Boolean formulae or finite automata is as
hard as factoring,” Technical Report TR-14-88, Harvard University, 1988

10. N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform,
and learnability. J. of ACM, 40(3), pp. 607-620, 1993.

11. Y. Mansour. Implementation Issues in the Fourier Transform Algorithm. Machine
Learning, 40, pp. 5-33, 2000.

Extracting a Simplified View of Design Functionality 49

12. J. Park and I. W. Sandberg, ”Universal approximation using radial-basis-function
networks,” Neural Computation, vol. 3, num. 2, pp. 246–257, 1991

13. M. Ben-Or and P. Tiwari, ”A deterministic algorithm for sparse multivariate poly-
nomial interpolation,” Proc. 12th ACM Symp. Theory Comput.,pp. 301–309, 1988.

14. R. Zippel, ”Interpolating polynomials from their values,” J. Symb. Comput. vol.9,
no.3, pp. 375-403, 1990

15. George M. Phillips Interpolation and Approximation by Polynomials. Springer-
Verlag, 2003

16. J. Schwartz, ”Fast probabilistic algorithms for verification of polynomial identi-
ties,” Jour. ACM, vol.27, no.4, pp.701-717, 1980.

17. OpenRISC 1200 at http://www.opencores.org/

Automatic Fault Localization for Property Checking�

Stefan Staber1, Görschwin Fey2, Roderick Bloem1, and Rolf Drechsler2

1 Graz University of Technology, 8010 Graz, Austria
2 University of Bremen, 28359 Bremen, Germany

Abstract. We present an efficient, fully automatic approach to fault localiza-
tion for safety properties stated in linear temporal logic. We view the failure as a
contradiction between the specification and the actual behavior and look for com-
ponents that explain this discrepancy. We find these components by solving the
satisfiability of a propositional Boolean formula. We show how to construct this
formula and how to extend it so that we find exactly those components that can be
used to repair the circuit for a given set of counterexamples. Furthermore, we dis-
cuss how to efficiently solve the formula by using the proper decision heuristics
and simulation based preprocessing. We demonstrate the quality and efficiency
of our approach by experimental results.

1 Introduction

When a design does not fulfill its specification, debugging begins. There is little tool
support for fault localization and correction, although industrial experience shows that
it takes more time and effort than verification does.

In this paper we propose an approach for automatic localization of fault candidates
for sequential circuits at the gate or HDL level for safety properties. The diagnosis
uses a set of counterexamples that is obtained from either a formal verification tool or
a simulator with functional checkers. Our approach builds on model based diagnosis
[21]. A failure is seen as a discrepancy between the required and the actual behavior of
the system. The diagnosis problem is then to determine those components that explain
the discrepancy, when assumed that they are incorrect.

In [12], it is shown that for certain degenerate cases of sequential circuits, model
based diagnosis marks all components as possible faults. Perhaps for this reason, there
is little work on model-based diagnosis for sequential circuits, with the exception of
[19], which does not take properties into account and has a different fault model than we
do. Our experimental results show, however, that such degenerate cases rarely happen
and that model based diagnosis can be used successfully in the sequential case.

Previous work in both the sequential and combinatorial case has assumed that a
failure trace is given and the correct output for the trace is provided by the user. In our
approach, instead of requiring a fixed error trace, we only assume that a specification
is given in Linear Temporal Logic (LTL) [20]. Counterexamples to a specification can
be extracted automatically and the user does not need to provide the correct output: the
necessary constraints on the outputs are contained in the specification.

� This work was supported in part by the European Union under contract 507219 (PROSYD).

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 50–64, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Fault Localization for Property Checking 51

We formulate the diagnosis problem as a SAT problem. Our construction is closely
related to that used in Bounded Model Checking (BMC) [5]. In our setting, a counterex-
ample of length k is given. As in BMC, we unroll the circuit to length k and build a
propositional formula to decide whether the LTL property holds. If we fix the inputs in
the unrolled circuit to the values given in the counterexample and assert that the prop-
erty holds, we arrive at a contradiction. The problem of diagnosis is the problem of
resolving this contradiction.

To resolve the contradiction, we extend the model of the circuit. We introduce a set
of predicates which assert that a component functions incorrectly. If an abnormal predi-
cate is asserted, the functional constraints between inputs and outputs of the component
are suspended. The diagnosis problem is to find which abnormal predicates need to be
asserted in order to resolve the contradiction.

We can further restrict the set of satisfying assignments by requiring that the output
of a gate must depend functionally on the inputs and the state of the circuit. Thus, we re-
quire the existence of a combinatorial correction. This allows us to extract a suggestion
of the proper behavior of the suspect component from the satisfying assignments.

To improve the performance of the algorithm, we have experimented with decision
heuristics for the SAT solver. In our setting a small set of decision variables suffices
to imply the values of all other variables. Restricting the decision variables to this set
leads to a considerable speedup and allows us to handle large and complex designs.

The search space can be further pruned by applying a simulation based preprocessing
step. By calculating sensitized paths, the set of candidate error sites is pruned first.
Only those components identified as candidates during the preprocessing step have to
be considered during SAT based diagnosis.

The paper is structured as follows. In Section 2, we give an overview of related
work. Section 3 gives the foundation of our approach and presents how we perform
fault localization. The applicability of the approach on the source level is shown in
Section 4. Then, Section 5 gives experimental evidence of the usability of our approach
and we conclude in Section 6.

2 Related Work

There is a large amount of literature on diagnosis and repair. Most of it is restricted to
combinatorial circuits. Also, much of it is limited to simple faults such as a forgotten
inverter, or an AND gate that should be an OR. Such faults are likely to occur, for
example, when a synthesis tool makes a mistake when optimizing the circuit. The work
in [25] and [7] on diagnosis on the gate level, for example, combine both limitations.

Wahba and Borrione [26] treat sequential circuits on the gate level, but limit them-
selves to simple faults. The fault model of [13] is more general, and it addresses se-
quential circuits, but assumes that the correct outputs are given. Its technical approach
is also quite different from ours.

Ali et al. proposed a SAT based diagnosis approach for sequential equivalence check-
ing [3] and debugging combinational hierarchical circuits [2]. But the technique was
only applied on the gate level and under the assumption that correct output values for
counterexamples are given.

52 S. Staber et al.

Both [10] and [29] work on the source code level (for hardware and programs, re-
spectively). Both are based on the idea of comparing which parts of the code are exer-
cised by similar correct and incorrect traces.

Only a few approaches have been proposed that are dedicated to fault localization or
correction for property checking. In [9] a simulation based approach is presented which
is less accurate than ours. Also, they do not consider functional consistency constraints.
We use this simulation based technique as a preprocessing step to prune the number of
components considered during diagnosis. In [14,23] a game based approach is presented
which locates a fault and provides a new function as a correction for a faulty component.
Because it computes a repair, this approach is far less efficient than the one presented
here.

3 Diagnosis for Properties

In this section we describe our approach. In 3.1 we give a description of the basic algo-
rithm. We describe extensions of the algorithm for runtime and accuracy improvements
in Section 3.2, 3.3, and 3.4. We conclude this section with a discussion in 3.5.

3.1 Computing Fault Candidates

In this section, we describe how to find fault candidates in a sequential circuit. To sim-
plify our explanation, we assume that the components of the circuit are gates, that is, a
fault candidate is always a single gate. We will return to the question of the proper defi-
nition of components in Section 4. We furthermore assume that the correct specification
is given as a (single) LTL formula.

We proceed in four steps:

1. Create counterexamples,
2. build the unrolling of the circuit, taking into account that some components may be

incorrect,
3. build a propositional representation of the property, and
4. use a SAT solver to compute the fault candidates.

The counterexamples to the property can be obtained using model checking or using
dynamic verification. It is advantageous to have many counterexamples available as this
increases the discriminative power of the diagnosis algorithm. Techniques for obtain-
ing multiple counterexamples in model checking have been studied in [8,11]. We will,
however, first focus on the case where one counterexample (of length k) is present. We
assume that the counterexamples are finite, that is, we ignore the liveness part of the
specification.

The purpose of steps 2 and 3 is to construct a propositional formula ψ such that
the fault candidates can easily be extracted from the satisfying assignments for ψ. As
explained before, the procedure is closely related to BMC, and we will pay attention
specifically to the differences.

Automatic Fault Localization for Property Checking 53

Unrolling the Circuit. We will assume that the reader knows how a propositional logic
formula is obtained by unrolling the circuit. Let n be the number of gates in the circuit
(before unrolling) and let ϕi,t be the propositional representation of the behavior of
gate i at time frame t. Then,

∧
t∈{0,...,k−1}

∧
i∈{0,...,n−1} ϕi,t is the (standard) length-k

temporal unrolling of the circuit.
In order to perform diagnosis, we introduce n new propositional variables, ab0

through abn−1. We replace the description of gate i at time frame t by the formula
ϕ′

i,t = (¬abi → ϕi,t). Intuitively, if abi is asserted, gate i may be incorrect, and we do
not make any assumptions on its behavior at any time frame. If abi is not asserted, the
gate works as required. Now assume that we have just one counterexample and we use
the formula ξ to represent that the inputs of the unrolled circuit are as prescribed by our
counterexample. Then the description of the unrolling is given by

ϕ′ = ξ ∧
∧

t∈{0,...,k−1}

∧

i∈{0,...,n−1}
ϕ′

i,t .

Building the Property. Next, we explain how to construct the propositional formula χ
representing the specification.

Suppose a partial specification of the system is given in a LTL formula f . For each
subformula g of f and for every time frame t we introduce a new propositional vari-
able vg,t. These variables are related to each other and to the variables used in the un-
rolling of the circuit as follows. For the temporal connectives, we use the well-known
expansion rules [15], which relate the truth value of a formula to the truth values of its
subformulas in the same and the next time frame. For instance, G f = f ∧ XG f and
F f = f ∨ X F f. The Boolean connectives used in LTL are trivially translated to the
corresponding constructs relating the propositional variables. Finally, the truth value of
atomic proposition p at time frame t is equal to the value of the corresponding variable
in the unrolling of the circuit. The final requirement is that the formula is not contra-
dicted by the behavior of the circuit. That is, vf,0, the variable corresponding to the
specification in time frame 0, is true.

Propositional Formula. Note that if we combine the description of the counterex-
ample, the circuit, and the specification and we assume that all abnormal predicates
are false, we arrive at a contradiction. Let ζ0 =

∧n−1
i=0 ¬abi, then ϕ′ ∧ χ ∧ ζ0 is

contradictory.
A diagnosis is obtained by asking which abnormal predicates can resolve the contra-

diction. For instance, for single fault candidates, let ζ1 =
∨n−1

i=0
∧

j �=i ¬abj guarantee
that at most one abnormal predicate is true and let ψ = ϕ′ ∧ χ ∧ ζ1. If a is a satisfying
assignment for ψ, and a asserts abi, then i is a fault candidate.

Multiple counterexamples can be used to reduce the number of diagnosed compo-
nents: only an explanation that resolves the conflict for all counterexamples is a fault
candidate. The propositional formula corresponding to this problem consists of one un-
rolling of the circuit for each counterexample. All sets of variables are disjoint, the
abnormal predicates, which are shared, are an exception.

54 S. Staber et al.

ack

X ack

G(f ∧g)

X G(f ∧g)

D0

D1

D0 D0

D1 D1

1

0

1

1

1

1

1

1

1

1

1

g

f

g∧f

ab1 ab2 ab3
0 1 01

req

G2

G1

G3

ack

0

0

G4

G5

G6

G7

1

0

1

valid

Time frame 0

G2

G1

G3

req

ack

G4

G5

G6

G7

1

1

1

Time frame 1

1

0

Fig. 1. Circuit with gate G2 as diagnosis (g = ¬req ∨ ack ∨ X ack, f = ¬ack ∨ ¬ X ack)

Example. In the following we illustrate the process using a simple arbiter with in-
put req and output ack. The arbiter is supposed to acknowledge each request either
instantaneously or in the next clock tick, but it may not emit two consecutive acknowl-
edgements. In LTL, the specification reads

G((¬req ∨ ack ∨ X ack) ∧ (¬ack ∨ ¬X ack)).

Let D0 and D1 be latches. Latch D0 remembers whether there is a pending request,
and D1 remember whether an acknowledge has occurred in the last step. The arbiter is
defined by the following equations: ack = (D0 ∨ req) ∧ D1, next(D0) = req ∧ ¬ack,
and next(D1) = ack. Furthermore, the initial values of D0 and D1 are 0. Note that the
circuit contains a fault: ack should be G1 ∧ ¬D1 (see Figure 1).

The shortest counterexamples to the property have length two. For example, if we
have requests in the first two time frames, ack is 0 in both frames, which violates the
specification.

Figure 1 shows the unrolled circuit combined with the unrolled LTL specification.
The abnormal predicates can remove the relation between the input and the output of
a gate. For instance, the clauses for gate G2 are equivalent to ¬ab2 → (G2 ↔ (G1 ∧
D1)). Nothing is ascertained about the case where ab2 is true.

The gates below the horizontal dashed line correspond to the unrolled formula. The
signal corresponding to the truth of the specification is labeled “valid”. For every time
frame, the outputs of the gates in the unrolled formula correspond to a subformula of

Automatic Fault Localization for Property Checking 55

the specification. In the figure, the labels on the dashed horizontal lines indicate which
subformula is represented by a gate output.

It is easily seen that valid is zero when two requests occur and all abnormal signals
are set to zero. (Please ignore the gray numbers.) Note that signals corresponding to the
valuation of ack and G (f ∧ g) in time frame 2 are inputs (bottom right). The fact that
the specification is false can be derived regardless of the values of these signals, since
the counterexample is finite.

The question we pose the SAT solver is whether there is a consistent assignment to
the signals that makes the specification true and sets only one of the abnormal predicates
to true. One solution to this question is shown in gray in the figure. Gate G2 is assumed
to be incorrect (as expected). For the circuit to be correct, it could return 1 in time
frame 0 and 0 in time frame 1. The corresponding value suggested by this satisfying
assignment is that G2 should be 0 when G1 is 1 and D1 is 0, and 0 when both inputs to
the gate are 1.

The contradiction cannot be explained by setting ab1 or ab3 to true, which means
that G2 is our only fault candidate.

3.2 Functionality Constraints

There is another satisfying assignment to the example just discussed: let G2 be 0 in
the first step and 1 in the second. Note that there is no combinational correction to the
circuit that implements this repair, as the inputs and states in both steps would be the
same, but the output of G2 is required to be different.

In fact, the approach may find diagnoses for which there is no combinational re-
pair. It may even find diagnoses when the specification is not realizable as a circuit. (A
similar observation is made in [28] for multiple test cases). We will now show that by
adding Ackermann constraints to our propositional formula we can guarantee that for
any diagnosis there is a fix that makes the circuit correct for at least the given set of
counterexamples.

Let us say that a gate g is repairable if there is a Boolean function b(i, s) in terms of
the inputs and the state such the circuit adheres to the specification when g is replaced
by b(i, s). That is, a gate is repairable if we can fix the circuit by replacing the gate by
some new cone of combinational logic.

We say that g is repairable with respect to C, where C is a set of sequences of
inputs, if there is a Boolean function b(i, s) such that none of the sequences in C are a
counterexample to the property when g is replaced by b(i, s).

Given a set of counterexamples C, the Ackermann constraint for a gate g says that
for any (not necessarily distinct) pair of counterexamples c1, c2 and any pair of time
steps i, j, if the state and the inputs of the circuit in time step i of counterexample c1
equal the state and the inputs in time step j of counterexample c2, then the output of g
is the same in both steps.

Ackermann constraints can easily be added to the propositional formula by adding
a number of clauses that is quadratic in the cumulative length of the counterexamples
and linear in the number of gates.

We have the following result.

56 S. Staber et al.

1 f u n c t i o n s t a t i c D e c i s i o n
2 f o r i := 1 to A . s i z e
3 l e t ab be the v a r i a b l e A[i] ;
4 i f ab == UNDECIDED then
5 ab := 1 ;
6 re turn DECISION DONE ;
7 e l s e i f ab == 1 then
8 f o r t := 0 to k − 1
9 i f H(ab)[t] == UNDECIDED

10 H(ab)[t] := 0 ;
11 re turn DECISION DONE ;
12 re turn SATISFIED ;

Fig. 2. Pseudocode of the static decision strategy

Theorem 1. In the presence of Ackermann constraints, given a set of counterexamples
C, any gate that is a diagnosis is repairable for C.

It can be argued that our choice of what constitutes a repairable gate is somewhat ar-
bitrary. Alternative definitions, however, are handled just as easily. For instance, one
could require that a fix is a replacement by a single gate with the same inputs. The Ack-
ermann constraints would change correspondingly. On the other extreme, one could
allow any realizable function, in which case the Ackermann constraints would require
that the output is equal if all the inputs in the past have been equal.

3.3 SAT Techniques

In practice, one wants all fault candidates, not just one. This can be achieved efficiently
by adding blocking clauses [17] to the SAT instances stating that the abnormal predi-
cates found thus far must be false. Note that we do not add the full satisfying assignment
as a blocking clause, but just the fact that some abnormal predicates must be false, to
exclude all other valuations of this assignment.

The efficiency of the SAT solver can be drastically improved using a dedicated deci-
sion strategy similar to [24]. By default, the solver performs a backtrack search on all
variables in the SAT instance. In our case all variable values can be implied when the
abnormal predicates and the output values of gates asserted as abnormal are given, since
the inputs of the unrolled circuit are constraint to values given by the counterexample.
Therefore, we apply a static decision strategy that decides abnormal predicates first and
then proceeds on those gates that are asserted abnormal starting at time frame 0 up to
time frame k − 1.

Figure 2 shows the pseudo code for this decision strategy. The vector A contains
all abnormal predicates. This vector is searched until a predicate ab with an undecided
value is found. If no value was assigned, the predicate is set to 1 (Lines 4-6). Due to
the construction of the SAT instance, this assignment implies the value 0 for all other
abnormal predicates. If the first assigned predicate has value 1, the output variable of
the gate influenced by ab is considered (Lines 7-11). The hash H maps abnormal pred-
icates to output variables of gates. H(ab) returns a vector of k propositional variables.
Variable H(ab)[t] represents the output of the gate that is asserted abnormal by ab at

Automatic Fault Localization for Property Checking 57

time frame t. Thus, the first gate with unknown output value that is asserted abnormal
is set to the value 0. Gates in earlier time frames are considered first. If no unassigned
variable is found, a satisfying assignment was found (Line 12). Note that only one value
of each variable has to be assigned in the decision strategy because the other value is
implied by failure driven assertions [16]. Note also that H(ab)[t] is a list in the general
case because we consider multiple counterexamples and components instead of gates,
i.e. each abnormal predicate may correspond to multiple gates as explained in Section
4. In our implementation this list is searched for the first gate that is undecided.

The experiments show a significant speed up when this strategy is applied. We have
not yet experimented with constraint replication, but this can obviously be used in our
setting, especially when multiple counterexamples are present.

3.4 Simulation Based Preprocessing

When all gates or components of a circuit are considered as potential diagnoses the
search space is very large. A first obvious method to reduce this search space is a cone-
of-influence analysis or the calculation of a static slice. As a result, only those compo-
nents that drive signals considered in the property are contained in the SAT instance.

Furthermore, we apply a simulation based preprocessing step [25,9] to further re-
duce the number of components that have to be considered during diagnosis. Given a
counterexample, all values are simulated on the unrolled circuit and the property in a
linear time traversal. Then, starting at the output of the property, sensitized paths are
traced towards the inputs and state at time frame 0 of the circuit [1]. This relies on the
notion of controlling values of inputs for gates that determine the value of the output,
e.g. the value 0 (1) is the controlling value for an AND gate (OR gate). First, the out-
put is marked. Then, inputs with controlling values are marked recursively. If no input
is controlling all inputs are marked recursively. Only components on a sensitized path
are candidates for diagnoses. When using multiple counterexamples only components
marked by each counterexample are candidates. Under a single failure assumption this
procedure does not change the solution space for diagnosis, because changing a com-
ponent that is not on a sensitized path cannot change the output value of the property.

The experimental results show that the overhead of this linear time preprocessing step
is low. This step can prune the search space and, by this, reduces the overall run time.

3.5 Discussion

Just like multiple counterexamples, stronger specifications reduce the number of diag-
noses. When more properties are considered, the constraints on the behavior are tight-
ened. This observation is supported by our experiments.

In practical applications a hint how to repair the faulty behavior at a particular com-
ponent is useful. The satisfying assignments not only provide diagnoses, but also the
values that the faulty components should have. Thus, a correction is determined for the
scenarios defined by the counterexamples.

Debugging the property – that might be faulty in practice – is also possible using the
same approach. In this case abnormal predicates are associated to components of the
property instead of the circuit.

58 S. Staber et al.

The extension to liveness properties does not seem to be simple. In model checking,
the counterexample to a liveness property is “lasso-shaped”: after some initial steps,
it enters an execution that repeats infinitely often. It is very easy to remove such a
counterexample by changing any gate that breaks the loop without violating the safety
part of the property. The recent observation that liveness properties can be encoded as
safety [4] does not seem to affect this observation as it merely encodes the loop in a
different way. Note however, that on an implementation level one probably has bounds
on the response time and liveness can thus be eliminated from the specification, at least
for the purpose of debugging.

4 Source Level Diagnosis

The previous section describes our approach by means of sequential circuits on the gate
level. In this section we show the applicability of the approach on the source level. An
expression on the source level may correspond to multiple gates. Therefore a single
fault on the source level may correspond to multiple faults on the gate level. To avoid
multiple fault diagnosis on the gate level, we can shift the diagnosis process to the
source level and do not care about the gate level representation. Another possibility is
to keep the information between source level and gate level and use it for the diagnosis
process.

We present two principal techniques to calculate diagnoses at the source code level,
discuss their advantages and point out the differences between them. Both techniques
have been implemented for an evaluation.

4.1 Instrumentation Approach

The instrumentation approach directly includes the abnormal predicates in the source
code of the design, this means components and reported diagnoses are parts of the
source code.

We modify the design by introducing new primary inputs for abnormal predicates.
Then, each component is enclosed by an if-statement that allows to override the value
that is internally calculated by an arbitrary value from another new primary input. For
example, when we consider the assignment c = (a && !b) as a component, we re-
place it by

c = if(ab) then new_input else (a && !b).

In this implementation the mapping between source and gate level is not important.
This makes the approach very easy to implement on top of an existing model checker.

The choice of components only depends on the instrumentation of the source code
and can be adjusted to meet particular needs. Our choice regards any expression as a
component, including right-hand sides of assignments and branching conditions.

We implemented the instrumentation approach on top of the VIS model checker [6].
We used two Perl scripts to instrument the Verilog design and the LTL property. We used
the BMC package of VIS to generate counterexamples. As SAT solver for computing
the diagnoses, we used zchaff [18] enhanced with the static decision heuristic discussed
in Section 3.5. In the current version of the implementation multiple counterexamples
need multiple calls to the SAT solver.

Automatic Fault Localization for Property Checking 59

source code
hierarchical

netlist

01

a

0

c

b

1

intermediate
representation

stmt

=

0c

stmt

=

1

&&

expr

==

if-stmt

==

a 0 b 1

c

ab3

ab1 ab2

if (a==0 && b==1)
 c= 1;
else
 c=0;

if

else

Fig. 3. Source code link in the Hierarchical Approach

4.2 Hierarchical Approach

In the second approach, the hierarchy that is induced by the syntactical structure of the
source code is included in the gate level representation of the design and the property.
This allows us to link the gate level to the source code.

The link between source code and gate level model is established during synthe-
sis. Figure 3 shows this procedure. An Abstract Syntax Tree (AST) is created from the
source code at first. Then, the AST is traversed and directly mapped to gate level con-
structs. During this mapping, the gates that correspond to certain portions of the source
code can be identified. Thus, the AST induces regions at the gate level. These regions
are grouped hierarchically.

Components are identified based on this representation. Each region corresponds to a
component. E.g., the expression (a==1) && (b==0) corresponds to three components:
(a==1), (b==0), and the complete expression. We introduce a single abnormal predicate
for each region. All gates that do not belong to a lower region in the hierarchy are
associated to this abnormal predicate. In the example the predicates ab1, ab2, and ab3
are introduced.

Although this approach requires a modified synthesis tool, the diagnosis engine can
take advantage of the hierarchical information. For instance, a correction of a single
expression may not be possible but changing an entire module may rectify all coun-
terexamples. When this hierarchy information is encoded in the diagnosis problem, a
single fault assumption still returns a valid diagnosis.

The granularity of the diagnosis result can also be influenced. For example, we may
choose only source level modules as components to retrieve coarse diagnoses, or, in
contrast, we may consider all subexpressions and statements as components for a fine
grained diagnosis result.

Finally, hierarchical information can be used to improve the performance of the di-
agnosis engine [2]. First, a coarse granularity can be used to efficiently identify pos-
sibly erroneous parts of the design. Then, the diagnosis can be carried out at a finer
granularity with higher computational cost to calculate more accurate diagnoses for the
previously diagnosed components.

The implementation of the hierarchical approach uses a modified version of the syn-
thesis tool vl2mv from VIS and an induction-based property checker. The design and
the property were described in Verilog. As a result, each can be considered during di-
agnosis. This environment can use multiple counterexamples for diagnosis and simula-
tion based preprocessing. The property checker is based upon a version of zchaff that

60 S. Staber et al.

Table 1. Results for weak vs. strong specification (Columns 1,2, and 3: name of the design,
number of gates and registers in design; Columns 4 and 5: length of the counterexample and
time in seconds to calculate it; Column 6: number of components on source level; Column 7 and
8: results for static slice (percentage numbers are the ratio of the result to the total number of
components); Columns 9 and 10: diagnosis results with weak specification; Columns 11 and 12:
diagnosis results with strong specification, Column 13 time to solve SAT instance for a single
and all diagnoses

Circuit BMC Diagnosis

slice weak strong

Prop gates registers len time #cmp #cmp % #cmp % #cmp % time

b01 e1, pOverfl 98 7 5 0.01 40 32 80 8 20 5 13 0.04, 0.10
b02 e1, pAltOut 46 4 5 0.02 20 20 100 6 30 5 25 0.01, 0.02
b03 e1, pGrantInv 387 30 4 0.01 50 49 98 10 20 7 14 0.01, 0.14
b09 e1, pLoadOld 398 28 21 0.13 33 22 67 14 42 6 18 0.38, 0.83
b10 e1, pRx2Tx 318 20 7 0.02 61 53 87 16 26 10 16 0.73, 0.96
b11 e1, pRsum 770 31 6 0.17 44 39 89 16 36 9 20 0.11, 0.39
b13 e1, pRelease 505 53 5 0.11 96 72 75 6 6 3 3 1.88, 1.94
VsaR e1, pInv 2956 154 15 0.5 56 50 89 14 25 8 14 1.99, 5.87

supports incremental SAT [27] and is enhanced with the static decision heuristic. Dur-
ing diagnosis, one SAT instance is created that includes a copy of the design for each
counterexample. We use the incremental interface of zchaff to calculate all diagnoses.

5 Experimental Results

For the experimental data, we used benchmarks provided with VIS. We manually in-
troduced a bug in each of the designs by changing an operator or a constant. In the
following, we will show how specific the diagnosis is and we will show the benefit of
the modified decision heuristics and simulation based preprocessing. We are currently
using two implementations, one for the instrumentation approach and one for the hier-
archical approach. This is the reason that the designs in the two tables are not the same.

5.1 Accuracy

Diagnosis Results and Strong Specification. For the analysis of the accuracy of the
diagnosis we first consider the results of the instrumentation approach. We used a Pen-
tium IV (Hyperthreading, 2.8 GHz, 3GB, Linux) for the experiments.

Table 1 contains the obtained experimental results. Since a verification engineer would
only consider the expressions for debugging that are in the cone of influence of the failing
property, we have calculated a static slice. For the diagnosis process we first used a weak
specification, namely only the property which failed during bounded model checking.
As shown in the table, the diagnosis results with the weak specification are far better than
the slicing results. We repeated the experiments with a stronger specification. We added
between three and ten additional properties to the property that failed during bounded
model checking. With a stronger specification the number of diagnoses were reduced
for every example, and for some examples results were significantly better. The small
number of diagnoses underlines the usefulness of our approach to fault localization.

Automatic Fault Localization for Property Checking 61

Table 2. Diagnosis results for multiple counterexamples and Ackermann constraints

Circuit Diagnosis

slice single four Ackermann

Prop gates registers len #cmp #cmp % #cmp % #cmp % #cmp %

am2910 p1 e1,pEntry5 2257 102 5 227 205 90 66 29 36 15 36 15
am2910 p2 e1, pStackPointer 2290 102 5 230 87 37 37 16 26 11 26 11
bpbs p1 e1, pValidTransition 1640 39 2 127 102 80 15 11 13 10 13 10
bpbs p1 e2, pValidTransition 1640 39 2 127 102 80 15 11 4 3 4 3
counter e1, pCountValue 25 7 3 11 10 90 4 36 4 36 1 9
FPMult e1, pLegalOperands 973 69 4 119 105 88 3 2 3 2 3 2
FPMult e2, pLegalOperands 973 69 4 119 105 88 54 45 47 39 47 39
gcd e1, pReadyIn22Cyc 634 51 22 87 68 78 45 51 35 40 35 40
gcd e2, pReadyIn22Cyc 634 51 22 87 68 78 34 39 32 36 32 36
gcd e1, pBoth 634 51 23 87 71 81 46 52 36 41 36 41
gcd e2, pBoth 634 51 23 87 71 81 33 37 33 37 33 37
gcd e1, pThree 634 51 23 87 71 81 33 37 23 26 23 26
gcd e2, pThree 634 51 23 87 71 81 39 44 22 25 22 25

Case Study. This example shows the difference in accuracy between two specifications
for example b09.

The original functionality of example b09 is a serial to serial converter. As a fault,
we negated the condition of an if-statement. The resulting circuit violates the property
that describes that in a certain state an input register must be zero. When we perform
diagnosis using only the failing property, 14 components are identified.

The converter has four states: INIT, RECEIVE, EXECUTE, and LOAD OLD. There
are specific transitions that are possible between the states, for example from the INIT
mode we must only reach the RECEIVE mode. If the permitted transitions between the
states are included in the specification, the number of diagnoses is only six.

For the diagnosis corresponding to the actual fault we can conclude out of the new
value that we have to invert the if-condition. One diagnosis is located in the branch
of the if assignment that is executed because of the faulty if-condition. The suggested
value for the input register is zero, as it is required in the property. The property that
failed is an implication. In four of the six remaining diagnoses, the new values for the
suspended components set the antecedent of the implication to false and therefore the
property is satisfied.

Multiple Counterexamples and Ackermann Constraints. Table 2 shows the influ-
ence of multiple counterexamples and Ackermann constraints on the diagnosis results.
The implementation of these features demands full access to the generation of the SAT
instance. We therefore integrated them in the hierarchical environment as explained in
Section 4.2. Experiments were carried out on an AMD Athlon 3500+ (Linux, 2.2GHz,
1 GB, Linux).

The columns provide the same data as the previous table. Besides diagnosis results
for static slicing, we report results for using a single counterexample, four counterexam-
ples and four counterexamples together with Ackermann constraints. The use of multi-
ple counterexamples can significantly improve the diagnosis result. In all but two cases
the number of diagnoses was reduced.

62 S. Staber et al.

Table 3. Run times for the different approaches (using four counterexamples)

BMC Diagnosis

zchaff default static simulation+static

Circuit, Property time time #cmp #dec time #cmp #dec time #cmp #dec

am2910 p1 e1, pEntry5 0.54 11.87 205 165,247 2.63 205 8,047 1.62 69 7,855
am2910 p2 e1, pStackPointer 0.01 0.40 87 3,848 0.31 87 989 0.28 52 916
bpbs p1 e1, pValidTransition 0.06 0.19 102 2,819 0.20 102 302 0.13 19 266
bpbs p1 e2, pValidTransition 0.03 0.16 102 1,805 0.14 102 110 0.11 5 87
counter e1, pCountValue <0.01 0.01 10 259 0.01 10 131 <0.01 9 130
FPMult e1, pLegalOperands 0.04 0.41 105 397 0.19 105 60 0.15 5 60
FPMult e2, pLegalOperands 0.04 2.27 105 17,540 1.14 105 8,440 0.95 76 7,320
gcd e1, pReadyIn22Cyc 18.7 1057.21 68 3,271, 957 53.98 68 479,526 54.35 67 479,525
gcd e2, pReadyIn22Cyc 22.07 351.16 68 1,022,573 19.65 68 115,519 18.59 63 112,833
gcd e1, pBoth 32.24 2213.35 71 3,468,162 91.74 71 425,438 90.08 67 425,436
gcd e2, pBoth 24.20 453.83 71 1,058,165 55.23 71 237,104 50.19 59 232,334
gcd e1, pThree 42.74 1626.07 71 2,617,354 201.76 71 723,180 198.44 65 730,191
gcd e2, pThree 35.50 498.99 71 1,278,064 1306.90 71 3,586,181 1307.80 71 3,586,181

In contrast, Ackermann constraints do not yield the same improvement. Only in one
case the number of diagnoses was reduced and the algorithm returned exactly the real
error site. The overhead in runtime is quite high for Ackermann constraints. We ob-
served an increase by up to a factor of 60 especially on large instances. Thus, Acker-
mann constraints should only be applied in a second stage of the diagnosis process due
to their low influence on the accuracy.

5.2 Runtime

In Section 3 we suggested two techniques to improve the runtime of the overall algo-
rithm: a static decision strategy for the SAT solver and the use of a simulation based
preprocessing step. Both techniques were implemented within the hierarchical frame-
work. Due to page limitation, we only report experimental results for the use of four
counterexamples without Ackermann constraints in Table 3. The table shows runtimes
for the different approaches. Additionally, the number of components considered during
SAT based diagnosis (this is not the number of components returned as diagnoses that
is shown in Table 2) and the number of decisions made by the SAT solver are reported.

The runtime decreases drastically when the static decision heuristic is applied. This
is due to the reduction of the number of decisions that have to be done by the SAT solver.
The only exception is the last benchmark, but when using only one counterexample the
runtime was only 9.91 seconds at the cost of a lower accuracy (see above). Usually, the
runtime does not exceed the time for BMC much — even when four counterexamples
are applied for diagnosis. Here, incrementally applying more and more counterexam-
ples as suggested in [22] can yield an even shorter runtime. The use of the simulation
based preprocessing step also saves some runtime in those cases were the number of
components considered during SAT based diagnosis can be reduced significantly. On
the other hand the overhead is quite low when no components can be pruned.

The creation of counterexamples dedicated for diagnosis may improve the diagnosis
results. This hypothesis is strengthened by following experimental results. We did 1000
diagnosis runs with 4 randomly chosen counterexamples on am2910 e1 for the property

Automatic Fault Localization for Property Checking 63

pEntry5. The number of diagnoses varied from 28 to 90 and the runtime varied between
1.75 and 3.75 seconds. Usually, a better diagnosis accuracy also had a shorter runtime.

In summary, the runtime was reduced drastically by the proposed techniques and
makes the effort of diagnosis comparable to that of BMC.

6 Conclusions

We have presented an approach to automatically locate design faults at the gate level
or the source code level. The approach handles safety properties written in LTL. A
propositional logic formula is built in such a way that diagnoses can be derived from its
satisfying assignments. We have shown how to extend the formula to make sure that a
diagnosed component is actually repairable for the given input sequences.

We have proposed two techniques to implement the approach. One is easy to im-
plement on top of an existing model checker, the other allows the diagnosis engine to
exploit hierarchical information. We have shown that the use of multiple counterexam-
ples and more comprehensive specifications provides a more accurate diagnosis result.
We have drastically improved the efficiency of the approach by using a dedicated search
strategy for the SAT solver and shown its applicability with experimental results.

Some ideas for future work have been discussed already. Furthermore, we would like
to further investigate in how far the techniques presented here can be used to find faults
in the specification rather than the system. Finally, we would like to attempt to use these
ideas on models of a C program, and we would like to try the approach for all possible
counterexamples, thus making it complete, by using quantified Boolean formulas.

References

1. M. Abramovici, P.R. Menon, and D.T. Miller. Critical path tracing - an alternative to fault
simulation. In Design Automation Conf., pages 214–220, 1983.

2. M.F. Ali, S. Safarpour, A. Veneris, M.S. Abadir, and R. Drechsler. Post-verification debug-
ging of hierarchical designs. In Int’l Conf. on CAD, pages 871–876, 2005.

3. M.F. Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith, and M.S.Abadir. Debugging
sequential circuits using Boolean satisfiability. In Int’l Conf. on CAD, pages 204–209, 2004.

4. A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. Electronic Notes
in Theoretical Computer Science, 66(2), July 2002. Formal Methods for Industrial Critical
Systems (FMICS’02).

5. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In
Fifth International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS’99), pages 193–207, Amsterdam, The Netherlands, March 1999. LNCS
1579.

6. R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Henzinger and
R. Alur, editors, Eighth Conference on Computer Aided Verification (CAV’96), pages 428–
432. Springer-Verlag, Rutgers University, 1996. LNCS 1102.

7. P.-Y. Chung, Y.-M. Wang, and I. N. Hajj. Diagnosis and correction of logic design errors in
digital circuits. In Design Automation Conference (DAC’03), pages 503–508, 2003.

8. G. Fey and R. Drechsler. Finding good counter-examples to aid design verification. In
MEMOCODE, pages 51–52, 2003.

64 S. Staber et al.

9. G. Fey and R. Drechsler. Efficient hierarchical system debugging for property checking. In
Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS’05), pages
41–46, 2005.

10. A. Groce. Error explanation with distance metrics. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS’04), pages 108–122,
Barcelona, Spain, March-April 2004. LNCS 2988.

11. A. Groce, D. Kroening, and F. Lerda. Understanding counterexamples with explain.
In R. Alur and D. Peled, editors, Sixteenth Conference on Computer Aided Verification
(CAV’04), pages 453–456. Springer-Verlag, Berlin, July 2004. LNCS 3114.

12. W. Hamscher and R. Davis. Diagnosing circuits with state: An inherently underconstrained
problem. In Proceedings of the Fourth National Conference on Artificial Intelligence
(AAAI’84), pages 142–147, 1984.

13. S.-Y. Huang and K.-T. Cheng. Errortracer: Design error diagnosis based on fault simulation
techniques. IEEE Trans. on CAD, 18(9):1341–1352, 1999.

14. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In K. Etessami and
S. K. Rajamani, editors, 17th Conference on Computer Aided Verification (CAV’05), pages
226–238. Springer-Verlag, 2005. LNCS 3576.

15. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems *Specifi-
cation*. Springer-Verlag, 1991.

16. J.P. Marques-Silva and K.A. Sakallah. GRASP: A search algorithm for propositional satisfi-
ability. IEEE Trans. on Comp., 48(5):506–521, 1999.

17. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
E. Brinksma and K. G. Larsen, editors, Fourteenth Conference on Computer Aided Verifi-
cation (CAV’02), pages 250–264. Springer-Verlag, Berlin, July 2002. LNCS 2404.

18. M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the Design Automation Conference, pages 530–535,
Las Vegas, NV, June 2001.

19. B. Peischl and F. Wotawa. Modeling state in software debugging of VHDL-RTL designs
— a model based diagnosis approach. In Automated and Algorithmic Debugging (AADE-
BUG’03), pages 197–210, 2003.

20. A. Pnueli. The temporal logic of programs. In IEEE Symposium on Foundations of Computer
Science, pages 46–57, Providence, RI, 1977.

21. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.
22. A. Smith, A. Veneris, and A. Viglas. Design diagnosis using Boolean satisfiability. In ASP

Design Automation Conf., pages 218–223, 2004.
23. S. Staber, B. Jobstmann, and R. Bloem. Finding and fixing faults. In D. Borrione and W. Paul,

editors, 13th Conference on Correct Hardware Design and Verification Methods (CHARME
’05), pages 35–49. Springer-Verlag, 2005. LNCS 3725.

24. O. Strichman. Accelerating bounded model checking of safety properties. Formal Methods
in System Design, 24(1):5–24, January 2004.

25. A. Veneris and I. N. Hajj. Design error diagnosis and correction via test vector simulation.
IEEE Trans. on CAD, 18(12):1803–1816, 1999.

26. A. Wahba and D. Borrione. Design error diagnosis in sequential circuits. In Correct Hard-
ware Design and Verification Methods (CHARME’95), pages 171–188, 1995. LNCS 987.

27. J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfiability engine.
In Proceedings of the Design Automation Conference, pages 542–545, Las Vegas, NV, June
2001.

28. F. Wotawa. Debugging hardware designs using a value-based model. Applied Intelligence,
16:71–92, 2002.

29. A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE Trans-
actions on Software Engineering, 28(2):183–200, February 2002.

Verification of Data Paths Using Unbounded Integers:
Automata Strike Back

Tobias Schuele and Klaus Schneider

Reactive Systems Group, Department of Computer Science, University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany

{Tobias.Schuele,Klaus.Schneider}@informatik.uni-kl.de
http://rsg.informatik.uni-kl.de

Abstract. We present a decision procedure for quantifier-free Presburger arith-
metic that is based on a polynomial time translation of Presburger formulas to al-
ternating finite automata (AFAs). Moreover, our approach leverages the advances
in SAT solving by reducing the emptiness problem of AFAs to satisfiability prob-
lems of propositional logic. In order to obtain a complete decision procedure,
we use an inductive style of reasoning as originally proposed for proving safety
properties in bounded model checking. Besides linear arithmetic constraints, our
decision procedure can deal with bitvector operations that frequently occur in
hardware design. Thus, it is well-suited for the verification of data paths at a high
level of abstraction.

1 Introduction

Hardware verification is usually performed at the level of propositional logic which is
self-evident if the system to be verified is given as a netlist of gates. Using propositional
logic as the basic formalism allows one to perform a symbolic state space exploration of
the system by means of binary decision diagrams (BDDs), or to apply bounded model
checking procedures that make use of sophisticated SAT solvers. However, while both
approaches have been successfully used for the verification of control-flow intensive
systems, large data paths are still hardly tractable using most symbolic model checkers.
To solve this problem, various approaches have been proposed such as abstract interpre-
tation, symmetry reduction, partial order reduction, and many others that aim at fighting
the state explosion problem.

Another approach to verify data-flow intensive systems is the use of more powerful
base logics. This is particularly interesting if the system is given at a higher level of
abstraction than gate level, where more complex operations are available. Regarding
the verification of data paths, such a logic should at least contain operations for integer
arithmetic. However, due to the undecidability of full arithmetic, this either requires
the use of interactive theorem provers or to consider decidable fragments such as Pres-
burger arithmetic [1]. In recent years, decision procedures for such decidable logics
have attained increasing interest, not only as stand-alone procedures, but also as the ba-
sis for combined decision procedures. For instance, the UCLID system [2] that is based
on a combination of the theory of uninterpreted functions with equality, Presburger
arithmetic, and the theory of arrays has been successfully used for the verification of
complex micro-processors.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 65–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

66 T. Schuele and K. Schneider

In this paper, we present yet another procedure for checking satisfiability of
quantifier-free Presburger arithmetic formulas. Our method is based on the translation
of Presburger formulas to finite automata as originally proposed in [3] and enhanced
for example in [4,5,6]. It is sometimes argued that automata-based decision procedures
for Presburger arithmetic are in general less efficient than other approaches such as in-
teger linear programming and Fourier-Motzkin variable elimination [7]. Indeed, none
of the benchmarks used in [8] could be solved using the LASH tool [9] that is based on
the method presented in [5]. However, such comparisons certainly depend on the type
of automata formulas are translated to and on the underlying decision procedures for
propositional logic (BDDs vs. SAT solvers).

In contrast to previous approaches, our method employs alternating finite automata
(AFAs) which can be viewed as a generalization of nondeterministic automata. As a
major advantage of AFAs, our method can benefit from sophisticated SAT solvers that
are state-of-the-art in many areas. In particular, the equational structure of AFAs allows
us to unwind their transition relations efficiently which is useful for checking emptiness
(a formula is unsatisfiable iff the language of the corresponding automaton is empty).
However, simply unwinding an AFA only yields a semi-decision procedure that can be
used to prove satisfiability of a formula, but not to prove its unsatisfiability. To solve
this problem, we use an inductive style of reasoning that has been originally proposed
for checking safety properties in bounded model checking.

As another advantage, our approach can be easily extended to deal with more pow-
erful logics. Regarding the verification of data paths, we consider an extension of Pres-
burger arithmetic by bitvector operations, since these operations frequently occur in
hardware design. For example, the ALUs of most microprocessors support arithmetic
as well as bitwise operations. While such an extension is straightforward in practice, it
has considerable impact on the complexity of the decision procedures: We show that
the satisfiability problem of Presburger arithmetic with bitvector operations cannot be
reduced to a polynomial sized satisfiability problem of propositional logic. For this rea-
son, we use an inductive approach and do not rely on a polynomial upper bound on the
size of the constructed formulas as in [8]. Finally, it should be mentioned that automata
encode all solutions of a formula which makes it easy to find the smallest one.

There has been much work on decision procedures for Presburger arithmetic. A com-
parison of different approaches can be found in [10,11,7]. The construction of deter-
ministic finite automata (DFAs) from linear arithmetic constraints is described in detail
in [5]. However, the proposed algorithms perform an explicit enumeration of the state
space. A symbolic encoding using BDDs is presented in [7,12]. From a practical point
of view, our method is most closely related to the approach presented in [8] that also
makes use of SAT solvers. The idea is to reduce the infinite domain of Presburger for-
mulas to a finite one by computing bounds on the size of the solutions. In contrast to
our approach, however, it cannot directly deal with bitvector operations as described
above. Strichman [13] presents another SAT based decision procedure that is based on
Fourier-Motzkin elimination. In the worst case, this approach leads to a SAT problem
that is doubly exponential in the size of the formula. Finally, Kroening et. al [14] pro-
pose an abstraction-based procedure that combines a SAT solver with a theorem prover
in order to successively generate approximations of the original formula.

Verification of Data Paths Using Unbounded Integers: Automata Strike Back 67

The outline of the paper is as follows: after briefly describing AFAs and Presburger
arithmetic in the next section, we present the corresponding translation in Section 3.
Then, we describe our approach for checking emptiness of AFAs and discuss the ef-
fect of introducing bitvector operations (Section 4). Experimental results are given in
Section 5, and finally, we conclude with a summary and directions for future work.

2 Foundations

2.1 Alternating Finite Automata

Alternating finite automata (AFAs) [15,16,17,18] and also Boolean automata [19,20,21]
are a natural generalization of nondeterministic finite automata (NFAs) in the sense that
the next state is not just chosen from a set of states, but determined by a propositional
formula1. Recall that an NFA is a tuple (Q, Σ, δ, q0, F), where Q is the set of states,
Σ is the alphabet, δ : Q × Σ → P(Q) is the transition function, q0 is the initial
state, and F ⊆ Q is the set of final states. A word aw ∈ Σ+ is accepted in a state
q ∈ Q iff there exists at least one successor state q′ ∈ δ(q, a) such that w is accepted
in q′ (the empty word is accepted in q iff q ∈ F). More formally, we recursively de-
fine acc(q, aw) :⇔ ∃q′ ∈ δ(q, a).acc(q′, w). Since there are only finitely many states,
the existential2 acceptance condition of NFAs can be replaced by a disjunction, i.e.,
acc(q, aw) :⇔

∨
q′∈δ(q,a) acc(q′, w). AFAs extend this idea to allow arbitrary proposi-

tional formulas in place of the disjunctions found in NFAs: Instead of a set of successor
states, each state has an associated formula that characterizes its acceptance condition.
Thus, to decide whether a word is accepted in a state, one simply evaluates the associ-
ated formula.

An AFA can be formally defined as follows, where we use Boolean variables not
only to represent the states, but also to encode the alphabet, i.e., we assume that a letter
is a vector of Boolean values:

Definition 1 (Alternating Finite Automaton (AFA)). An alternating finite automaton
is a tuple (Q, V, δ, I, F), where

– Q is the set of state variables,
– V is the set of input variables,
– δ : Q → Prop(Q ∪ V) is the transition function that associates with each state

variable a propositional formula over the variables Q ∪ V ,
– I ∈ Prop(Q ∪ V) is the initial formula over the variables Q ∪ V , and
– F : Q → B is the final function that maps state variables to the Booleans.

In the sequel, we denote state variables by q0, . . . , qm and input variables by v0, . . . , vn.
Moreover, we abbreviate Σ := B

|V |.
1 Originally, the term alternation stems from the fact that existential and universal quantifiers

can alternate during the course of a computation, whereas in a nondeterministic computation
there are only existential quantifiers.

2 Clearly, one can also define a dual type of automata, where a word is accepted in a state iff all
of its successor states accept the remaining word. The acceptance condition of such universal
automata is a conjunction of the acceptance conditions over the successor states.

68 T. Schuele and K. Schneider

This definition slightly differs from the ones found in the literature in that it provides an
initial formula instead of only a single initial state. As a result, an AFA as defined above
cannot accept the empty word. Moreover, we allow arbitrary propositional formulas,
i.e., a variable may occur not only in positive, but also in negative form.

Definition 2 (Acceptance and Language of an AFA). Given a propositional formula
f , let f [vi/gi, wj/hj]

0≤i≤m
0≤j≤n denote the formula obtained by simultaneously substitut-

ing the formulas gi and hj for the variables vi and wj , respectively, for 0 ≤ i ≤ m and
0 ≤ j ≤ n. Given an AFA A = (Q, V, δ, I, F), the acceptance of a word with respect
to a formula f is defined as follows, where (b0, . . . , bn) ∈ Σ and w ∈ Σ+:

acc(f, (b0, . . . , bn)w) :⇔ acc(f [qi/δ(qi), vj/bj]
0≤i≤m
0≤j≤n , w)

acc(f, (b0, . . . , b0)) :⇔ f [qi/F (qi), vj/bj]
0≤i≤m
0≤j≤n

A word w is accepted by A iff acc(I, w) holds. The language accepted by A is defined
as L(A) := {w ∈ Σ∗ | acc(I, w)}.

AFAs have the property that they are backward deterministic which means that they are
deterministic if one considers them working on the input string from right to left. Thus,
an AFA can also be viewed as a symbolic description of a deterministic finite automaton
(DFA) accepting the reverse language. The transition relation is thereby given as an
equation system, i.e., by the conjunction

∧
q∈Q q′ ↔ δ(q), where q′ is the next state

variable associated with q. For this reason, it is often more convenient to consider the
reverse language when dealing with AFAs, which has lead to the notion of reversed
AFAs [22,23,24]. In particular, when constructing AFAs for Presburger formulas, we
will assume that the input is being read from right to left.

However, it should be emphasized that the order in which the input is read is mainly
a matter of taste. For instance, checking whether a word is accepted by an AFA can
be done in both directions with essentially the same complexity. The only difference is
that when reading from right to left, we have to deal with a vector of formulas, whereas
in the opposite direction it suffices to consider a single formula (cf. Definition 2). The
crucial point is that AFAs have an equational structure [25], or in terms of symbolic
model checking, an explicit partitioning of the transition relation. This allows us to
unwind AFAs without introducing additional state variables and to employ efficient
SAT solvers for checking emptiness, as mentioned in the introduction.

Given two AFAs A1 = (Q1, V, δ1, I1, F1) and A2 = (Q2, V, δ2, I2, F2), the Boole-
an operations are defined by the corresponding operations on the initial formulas:

– ¬A1 := (Q1, V, δ1, ¬I1, F1)
– A1 ∧ A2 := (Q1 ∪ Q2, V, δ1 ∪ δ2, I1 ∧ I2, F1 ∪ F2)
– A1 ∨ A2 := (Q1 ∪ Q2, V, δ1 ∪ δ2, I1 ∨ I2, F1 ∪ F2)

It is easy to see that the Boolean operations satisfy the following equations (ε denotes
the empty word):

– L(¬A1) = L(A1) \ {ε}
– L(A1 ∧ A2) = L(A1) ∩ L(A2)
– L(A1 ∨ A2) = L(A1) ∪ L(A2)

Verification of Data Paths Using Unbounded Integers: Automata Strike Back 69

2.2 Quantifier-Free Presburger Arithmetic with Bitvector Operations

In this subsection, we briefly describe the syntax and semantics of quantifier-free Pres-
burger arithmetic with bitvector operations (QFPAbit).

Definition 3 (Syntax of QFPAbit). Let V := VZ ∪ VB be a finite set of integer and
Boolean variables, respectively, such that VZ ∩ VB = ∅ holds. Then, the set of terms is
defined as follows with c ∈ Z and x ∈ VZ:

T := c | x | T + T | c · T | −→¬T | T
−→∧T | T

−→∨T

The set of formulas is defined as follows with p ∈ VB and �� ∈ {=, �=, <, ≤, >, ≥}:

F := p | T �� T | ¬F | F ∧ F | F ∨ F

The semantics should be clear from the context except for the bitvector operations −→¬ ,−→∧ , and −→∨ that need some further explanation. Their semantics is based on two’s com-
plement encoding, where the value 〈xk . . . x0〉Z of a bitvector (xk . . . x0) is defined as
follows:

〈xk . . . x0〉Z := −2kxk +
k−1∑

i=0

2ixi

Recall that in this encoding the most significant bit can be replicated without changing
the value (sign extension). Thus, the equation 〈xk . . . x0〉Z = 〈xkxk . . . x0〉Z is valid
for all bitvectors (xk . . . x0). A term −→¬x is then interpreted as 〈¬xk . . .¬x0〉Z, pro-
vided that x = 〈xk . . . x0〉Z holds. Similarly, the terms x

−→∧ y and x
−→∨ y are interpreted

as 〈xk ∧ yk . . . x0 ∧ y0〉Z and 〈xk ∨ yk . . . x0 ∨ y0〉Z, respectively. For example, as
−6 is represented by the bitvector (1010), and 5 by (0101), it follows that −6−→∨ 5 is
represented by (1111), which is the number −1. Moreover, we have −→¬ 5 = −6.

It is well-known that a set can be defined in pure Presburger arithmetic, i.e., without
extensions such as bitvector operations, iff it is ultimately periodic [26,27]. A set Z ⊆ Z

is ultimately periodic iff there exists a p ≥ 1 (the period) such that the following holds:

– ∃n+ ≥ 0.∀n ≥ n+.n ∈ Z ⇔ n + p ∈ Z

– ∃n− ≤ 0.∀n ≤ n−.n ∈ Z ⇔ n − p ∈ Z

However, this does not hold for Presburger arithmetic with bitvector operations as de-
fined above. Consider, for example, the formula

pow2(x) := 1 + ((x − 1)−→∨x) = 2x ∧ x > 0

which holds iff x is a power of two. Since the set of satisfying assignments of pow2
is not ultimately periodic, QFPAbit is strictly more expressive than pure Presburger
arithmetic. In fact, QFPAbit is as expressive as the quantifier-free fragment of the weak
monadic second order logic of linear order (WMSO<). The proof is based on the fact
that for every WMSO< formula there exists an equivalent one whose atoms express
singletons, set inclusion, and the successor function. Since these atoms are definable in
QFPAbit, every WMSO< formula can be translated to an equivalent QFPAbit formula.

70 T. Schuele and K. Schneider

3 Translation of Quantifier-Free Presburger Arithmetic to AFAs

The relationship between QFPAbit formulas and AFAs is established via the two’s com-
plement encoding presented in the previous subsection. For that purpose, we associate
with each integer variable x ∈ VZ and each Boolean variable p ∈ VB exactly one input
variable v ∈ V of an AFA. A word w ∈ Σ+ with

w =

⎛

⎝
b0,k

...
bn,k

⎞

⎠ . . .

⎛

⎝
b0,1

...
bn,1

⎞

⎠

⎛

⎝
b0,0

...
bn,0

⎞

⎠

is then interpreted as the assignment ξw : V → Z ∪ B, where ξw(xi) := 〈bi,k . . . bi,0〉Z

for xi ∈ VZ and ξw(pi) := bi,k for pi ∈ VB. Using this encoding scheme, the i-th row
encodes the value of the i-th variable, and the j-th column is read by an automaton in
the j-th step. Hence, the number of variables is finite and fixed, whereas their bitwidth
is also finite, but arbitrarily large.

Since we have already shown how to perform the Boolean operations on AFAs, it
remains to describe the construction of automata for relations and Boolean variables.
Since the latter only depend on the most significant bits of a word, they can be easily
translated to an AFA by considering only the initial formula, i.e., a formula p with
p ∈ VB is translated to the automaton (∅, V, ∅, vp, ∅) with vp ∈ V (the third and the
fifth component are the empty set, since the domain of the corresponding functions is
empty). Hence, there is no overhead for translating the propositional part of a QFPAbit
formula to an AFA.

The translation of arbitrary relations is slightly more difficult. As a first step, we
separate the bitvector parts from the arithmetic parts. By introducing new variables, it
is straightforward to construct an equisatisfiable formula that only contains relations of
either type. In the same way, relations over more than three variables can be reduced
to relations over at most three variables. For instance, the formula (x−→∧ y) + z = s is
satisfiable iff the formula (x−→∧ y = t) ∧ (t + z = s) is satisfiable. Thus, it suffices to
consider the following three types of relations: −→¬x = y, x

−→∧ y = z, and x + y ≤ z.
In practice, however, this is rather inefficient, since it often requires a large number of
auxiliary variables. Moreover, equations must be expressed by a conjunction of inequal-
ities. For this reason, we consider relations of the following types, where T1 and T2 are
terms containing only bitvector operations:

(A) T1 = T2 (B)
n∑

i=0

cixi = c (C)
n∑

i=0

cixi < c

Equations of type (A) can be translated to an AFA with a single state variable. Initially,
this variable is set to true and at each step it is checked whether the inputs satisfy the
equation. If the equation is not satisfied, the state variable is set to false and keeps this
value until the last letter has been read. More precisely, let T ′

1 and T ′
2 be the terms ob-

tained by replacing all integer variables xi with the corresponding input variables vi.
Then, the equation T1 = T2 is translated to the AFA ({q}, V, δ, I, F) with δ(q) ≡ I ≡
q ∧ (T ′

1 ↔ T ′
2) and F (q) ≡ 1 (≡ denotes equivalence of propositional formulas).

Verification of Data Paths Using Unbounded Integers: Automata Strike Back 71

The construction of DFAs from linear arithmetic constraints over natural numbers
has already been presented in [4] and extended in [5] to deal with integers. The idea is
to read the input from left to right, i.e., starting with the most significant bits, and to
keep track of the value of the left-hand side of an equation (inequality) as successive
bits are read. Thus, each state corresponds to an integer γ that represents the current
value. The next state is then defined by γ′ = 2γ +

∑n
i=0 cibi, where (bn, . . . , b0) is

the input vector. For an equation, the final state is uniquely determined by its right-
hand side, i.e., the constant c. Similarly, for an inequality, a state is final iff its value is
less than c. Moreover, it was shown in [5] that there always exists an α ∈ N such that
|γ| > α implies |γ′| > |γ|. Thus, all states with |γ| > |c| can be collapsed into a single
nonaccepting state. As a result, there are only finitely many states. More precisely, the
number of states is bounded by O(log2 |c| ·

∑n
i=0 |ci|) [5].

In contrast to [5], our approach is based on reading the input from right to left when
considering DFAs (the corresponding AFAs still read from left to right, and thus, the
most significant bits that determine the signs can be easily encoded in the initial formu-
las). In many cases, this allows us to detect conflicts very early. For example, given an
equation

∑n
i=0 cixi = c with ci even and c odd, it is clear that the least significant bit of

the sum is always zero. Thus, the equation is unsatisfiable which can be detected after
reading the right-most input vector. Let us first consider the translation of equations.
Given a term T =

(∑n
i=0 cixi

)
− c, the translation is based on the following recursion

(T ∼=k 0 holds iff T is divisible by k):

T = 0 ⇔ T ∼=2 0 ∧ �T/2� = 0 (1)

Unwinding this equation is essentially equivalent to checking whether the bits of the
sum (first conjunct) and the carry (second conjunct) are zero. Hence, by reading the
input from right to left, we do not use the states of an AFA to store the current value of
the sum, but to store the result of the division, i.e., the carry.

Before we can construct an AFA for an equation or inequality, we must determine
the number of required state variables (since in [5] the states are represented explicitly
instead of symbolically, they can be constructed on-the-fly). For that purpose, we have
to compute the maximal (minimal) carry that can occur while reading a word.

Theorem 1. Given a relation
∑n

i=0 cixi �� c with �� ∈ {=, <}, let cmax and cmin
denote the sum of the positive and negative coefficients, respectively. Then, the following
holds for the maximal carry kmax and the minimal carry kmin:

kmax =
{

cmax − 1 if cmax + c > 1
−c otherwise

kmin =
{

cmin if cmin + c < 0
−c otherwise

Proof. In the worst case, either only variables with positive or with negative coefficients
contribute to the carry. Hence, the sequence of maximal (minimal) carries is xi+1 :=
f(xi) starting with x0 := −c, where f(x) = �(x + A)/2� for A = cmax (A = cmin).
Note that f is monotonic, since it is composed of the monotonic functions λx.x + A,
λx.x/2, and λx.�x�. Thus, the sequence is monotonically increasing if x0 ≤ f(x0)
and monotonically decreasing if x0 ≥ f(x0). Moreover, f has two fixpoints, namely a
greatest fixpoint νx.f = A and a least fixpoint μx.f = A − 1. In order to determine

72 T. Schuele and K. Schneider

kmax := max{xi | i ≥ 0}, we have to distinguish between two cases: If x0 < f(x0),
i.e., −c < �(−c + cmax)/2� ⇔ cmax + c > 1, then limi→∞ xi = μx.f = A − 1,
and hence, kmax = cmax − 1. Otherwise, the sequence is monotonically decreasing and
converges to A so that kmax = x0 = −c. The proof for kmin is analog. ��

Thus, the number of bits required to store the carries is m := max(||kmax||, ||kmin||),
where ||.|| : Z → N yields the number of bits required to represent an integer in two’s
complement encoding.

Definition 4 (Translating Equations to AFAs). Given a set of integer variables VZ =
{x0, . . . , xn}, let V := {v0, . . . , vn} be the set of input variables. Then, an equation∑n

i=0 cixi = c is translated to an AFA (Q, V, δ, I, F) with m + 1 state variables Q =
{q0, . . . , qm} such that the following holds, where d :=

∑n
i=0 civi:

– 〈δ(qm), . . . , δ(q1)〉Z = 〈qm, . . . , q1〉Z + �d/2�
– δ(q0) ≡ (q0 ∧ d ∼=2 0)
– I ≡ (〈qm, . . . , q1〉Z − �d/2� = 0 ∧ q0)
– 〈F (qm), . . . , F (q1)〉Z = −c

– F (q0) = 1

An AFA constructed according to the above definition essentially implements the suc-
cessive application of Equation (1). Given a word with k letters, we obtain the following
formula by unwinding the equation, where q0 represents the conjunction of the sum bits
at positions 0 ≤ i < k and 〈qm, . . . , q1〉Z the carry at step k:

T ∼=2 0 ∧ (T/2) ∼=2 0 ∧ · · · ∧ (T/2k−1) ∼=2 0
︸ ︷︷ ︸

q0

∧ �T/2k�
︸ ︷︷ ︸

〈qm,...,q1〉Z

= 0

As an example, consider the equation 2x − y = 1. With cmax = 2 and cmin = −1 we
obtain kmax = 1 and kmin = −1. Since m = max(||1||, || − 1||) = max(2, 1) = 2,
a total number of three state bits are required. The reachable part of the corresponding
DFA is shown in Figure 1, where dotted transitions indicate the application of the initial
formula. Note that this leads to nondeterministic behavior, since one might apply the
initial formula, but one might also unwind the AFA once more. However, the remaining
(large) part is always deterministic.

The translation of inequalities to AFAs is very similar to the translation of equations
except that we do not have to check whether all bits of the sum are zero. It suffices to
check whether the carry will eventually be negative. This can be easily done by exam-
ining the most significant bit which determines the sign in two’s complement encoding.

Definition 5 (Translating Inequalities to AFAs). Given a set of integer variables
VZ = {x0, . . . , xn}, let V := {v0, . . . , vn} be the set of input variables. Then, an
inequality

∑n
i=0 cixi < c is translated to an AFA (Q, V, δ, I, F) with m state variables

Q = {q1, . . . , qm} such that the following holds, where d :=
∑n

i=0 civi:

– 〈δ(qm), . . . , δ(q1)〉Z = 〈qm, . . . , q1〉Z + �d/2�
– I ≡ (〈qm, . . . , q1〉Z − �d/2� < 0)
– 〈F (qm), . . . , F (q1)〉Z = −c

Verification of Data Paths Using Unbounded Integers: Automata Strike Back 73

111 001 011 q2q1q0

�
0
1

� �
0
0

� �
1
1

�
�

1
1

� �
1
0

�

�
0
1

��
0
1

� �
0
0

� �
1
1

�

�
x
y

�

Fig. 1. Automaton for the equation 2x − y = 1

4 Checking Emptiness of AFAs

Once we have constructed the AFA Aϕ for a QFPAbit formula ϕ, checking satisfiability
of ϕ amounts to checking whether the language of Aϕ is empty. If so, there does not
exist a satisfying assignment for ϕ. A straightforward way to check emptiness of an
AFA is to unwind it according to Definition 2 without assigning values to the input
variables. Hence, a formula is satisfiable iff there exists a k ≥ 0 such that the formula
obtained by unwinding the AFA is satisfiable. However, this only yields a semi-decision
procedure that cannot be used directly to prove that a formula is unsatisfiable, since this
would require infinitely many unwinding steps.

To solve this problem, we could make use of the fact that for finite state systems
there always exists an upper bound on the required number of unwinding steps which
is referred to as the completeness threshold in bounded model checking. In general,
however, computing the completeness threshold is a nontrivial task and does not always
yield a tight bound. On the other hand, regarding the special case of quantifier-free
Presburger formulas, it is well-known that if a formula has a satisfying solution, there
is one whose size, measured in the number of bits, is polynomially bounded in the size
of the formula. This allows one to translate every quantifier-free Presburger formula to
an equisatisfiable propositional formula of polynomial size [8] (in theory, this follows
from the fact that deciding formulas of linear integer arithmetic is NP-complete [28]).

Unfortunately, computing an upper bound on the number of unwinding steps for
checking emptiness of an AFA is hardly feasible in practice. This is due to the fact that
QFPAbit is more expressive than quantifier-free Presburger arithmetic (cf. Section 2.2).
In particular, if a formula contains bitvector operations, there may not even exist a
polynomially sized model w.r.t. to the length of the formula. To prove this, let Rk be a
family of formulas defined as follows with k ≥ 2:

Rk := x > 0 ∧ pow2

⎛

⎝1 +

k−1−→∨

i=0

2ix

⎞

⎠ ∧
k−2∧

i=0

k−1∧

j=i+1

2ix
−→∧ 2jx = 0

Note that a formula pow2(f(x)) can be easily translated to the equisatisfiable formula
pow2(y) ∧ y = f(x). The models of Rk are characterized by the following lemma:

74 T. Schuele and K. Schneider

Lemma 1. A natural number x is a model of Rk iff every k-th bit of x is one and all
other bits are zero.

Proof. The operands of the bitvector operations are multiples of x, each shifted by i
bits to the left for 0 ≤ i < k, as shown in the following diagram:

x 0 xn . . . xk xk−1 x1 x0
2x 0 xn . . . xk xk−1 x1 x0 0

...
2k−1x 0 xn . . . xk xk−1 x1 x0 . . . 0 0 0

First, we prove that a number x = 〈0, xn, . . . , x0〉Z is a model of Rk if xi = 1 and
xj = 0 for all 0 ≤ i, j ≤ n such that i ∼=k 0 and j �= i holds. The first part of the
conjunction is obviously satisfied, since the most significant bit of x is zero. The second
part is also satisfied, since each column in the above diagram contains an xi with i ∼=k 0.
Thus, the result of the bitvector disjunction is a string of 1’s and the increment of the
corresponding number is a power of two. The third part of the conjunction performs a
pairwise comparison of the rows to ensure that at most one bit is set in each column.
Since the columns consist of exactly k elements, they cannot contain an xi and an
xi+k with i ∼=k 0. Hence, this part is also satisfied. The reverse direction of the proof
follows from the fact that this is the only assignment of the xi’s that satisfy the formula.
Given an arbitrary x, we must have x0 = 1 by the second part of the conjunction,
x1 = · · · = xk−1 = 0 by the third part, and so on. ��

Theorem 2. Given a satisfiable QFPAbit formula ϕ, the size of its smallest model,
measured in the number of bits, is not polynomially bounded in the size of ϕ.

Proof. Let |ϕ| denote the size of a formula ϕ, where the size of a constant is measured
in its number of bits. Then, we have |Rk| ∈ O(k3). Moreover, given that p : N → N is
the sequence of prime numbers, it holds that p(i) ∼ i · ln i and

∏n
i=1 p(i) ∼ en [29].

We define Sn := −2−→∧
∧n

i=1 Rp(i) (the bitvector conjunction with −2 masks out the
least significant bits) and obtain |Sn| ∈ O(

∑n
i=1(i · ln i)3). Hence, the size of Sn is

polynomially bounded by O(n4(ln n)3). Note that a number x satisfies Sn iff every l-th
bit of x is true and all other bits are zero, where l =

∏n
i=1 p(i). Thus, the size of the

smallest solution is Θ(en) which is not polynomially bounded by n. ��

For this reason, we use another approach which has been originally proposed for check-
ing safety properties in bounded model checking [30]. As a major advantage, this ap-
proach uses an inductive style of reasoning and terminates as soon as possible, i.e.,
it does not suffer from non-tight bounds. Given a finite set of states S, a complete
transition relation R ⊆ S × S, and a set of initial states I ⊆ S, let path(s0 . . . sk)
hold iff (si, si+1) ∈ R for all 0 ≤ i < k. Moreover, let loopFree(s0 . . . sk) hold iff
path(s0 . . . sk) holds and si �= sj for all 0 ≤ i < j ≤ k. Then, the method presented in
[30] aims at checking whether a property P ⊆ S invariantly holds on all paths originat-
ing in I using the following induction scheme, where k denotes the induction depth:

base case: s0 ∈ I ∧ path(s0 . . . sk) → (∀i.0 ≤ i ≤ k → si ∈ P)
induction step: loopFree(s0 . . . sk+1) ∧ (∀i.0 ≤ i ≤ k → si ∈ P) → sk+1 ∈ P

Verification of Data Paths Using Unbounded Integers: Automata Strike Back 75

The base case checks whether P holds on a path s0 . . . sk, and the induction step checks
whether this path can be extended without violating P . Thus, P invariantly holds on all
paths if both conditions are valid3. Note that the method is sound and complete for
sufficiently large values of k (completeness follows simply speaking from the fact that
every infinite path in a finite state system eventually contains a loop).

In order to prove that an AFA (Q, V, δ, I, F) is empty using induction, we show that
the initial formula I never evaluates to true for the given assignment of the final states F ,
i.e., we set P := ¬I . For that purpose, the AFA is iteratively unwound until the base
case fails or the induction step holds. As mentioned previously, this does not require
the introduction of new state variables due to the equational structure of AFAs. Instead,
it suffices to replace the input variables with new variables at each step, since a path
is uniquely determined by the read word. As a consequence, the size of the resulting
formulas is reduced significantly which simplifies the check for satisfiability.

The algorithm for checking emptiness of an AFA is shown in Figure 2, where a set
of paths is viewed as a tuple of propositional formulas. The current set of paths and
their prefixes are stored in the list unwind. Remembering the suffixes is necessary to
update the variable loopFree when a path is extended. The variable reject corresponds
to the formula ∀i.0 ≤ i ≤ k → si ∈ P of the induction scheme, where P := ¬I .
That is, reject holds iff a path and its suffixes are nonaccepting. As the first step, the
algorithm checks whether I is unsatisfiable. If so, the AFA is clearly empty. Otherwise,
induction is applied for increasing depths, starting with paths of length one. If the base
case fails, a counterexample has been found and the algorithm returns false. Otherwise,
the current set of paths is extended and the induction step is checked. If the induction
step also holds, it follows that the AFA is empty. If it does not hold, the procedure is
repeated for an increased induction depth.

5 Experimental Results

The approach presented in this paper has been implemented in our symbolic model
checker Beryl which is part of the Averest framework4. We performed two sets of ex-
periments, one with a number of benchmarks contained in Averest and one with the
quantifier-free linear integer arithmetic (QF_LIA) benchmarks of the satisfiability mod-
ulo theories library (SMT-LIB) [31]. The former are given in our synchronous language
Quartz and were compiled to symbolically encoded transition systems. As the base
logics, our compiler supports propositional logic as well as Presburger arithmetic with
bitvector operations. The generated transition systems are essentially the same for both
logics, except that arithmetic operations on integers are translated to the corresponding
operations on fixed sized bitvectors when using propositional logic as the base logic.

The results for the Averest benchmarks are shown in Table 1. For each benchmark
we proved a liveness property (first row) and disproved a safety property (second row).
All runtimes are given in seconds and were measured on a Xeon processor with 3GHz.

3 As described in [30], there exists a dual type of induction scheme that can be thought of as
working in the backward direction. For the sake of simplicity, however, we restrict ourselves
to the forward case. Nevertheless, our implementation supports both approaches.

4 http://www.averest.org

http://www.averest.org

76 T. Schuele and K. Schneider

function empty(Q, V, δ, I, F)
if ¬sat(I) then return true;
reject := ¬I ;
unwind := cons((q0, . . . , qm), []);
loopFree := true;
loop

// base case
if ¬valid(reject[qi/F (qi)]

0≤i≤m) then return false;
// unwind
(w0, . . . , wn) := createFreshVariables(n + 1);
(r0, . . . , rm) := head(unwind);

(s0, . . . , sm) := (δ(q0)[qi/ri, vj/wj]
0≤i≤m
0≤j≤n , . . . , δ(qm)[qi/ri, vj/wj]

0≤i≤m
0≤j≤n);

u := unwind;
repeat

(t0, . . . , tm) := head(u);
loopFree := loopFree ∧

�m
i=0 si ⊕ ti;

u := tail(u);
until u = [];
unwind := cons((s0, . . . , sm), unwind);

rejectNext := reject[qi/si]
0≤i≤m;

// induction step
if valid(loopFree ∧ reject → rejectNext) then return true;
reject := reject ∧ rejectNext;

end;
end;

Fig. 2. Algorithm for checking emptiness of an AFA using induction

A dash indicates that a benchmark could not be solved in less than ten minutes. The
first two columns show the runtimes for bounded model checking (BMC) using AFAs
and DFAs. The latter were constructed by the method presented in [5] and use a semi-
symbolic encoding, i.e., the states are represented explicitly and the transitions sym-
bolically by means of BDDs. Moreover, we measured the runtimes for global model
checking (GMC) using DFAs (GMC is not possible for AFAs, since they do not sup-
port image computation). As can be seen, AFAs are much more efficient than DFAs for
BMC, and in many cases also more efficient than GMC/DFA. For BubbleSort, however,
BMC/AFA is significantly slower which is due to the fact that this benchmark requires
a high bound in BMC. Finally, we verified the benchmarks using Cadence SMV and
NuSMV for integers with fixed bitwidths (dynamic variable reordering was enabled).
One might argue that such a comparison is like comparing apples and oranges, par-
ticularly since the results for AFAs are based on bounded model checking, while the
results for SMV/NuSMV were obtained using global model checking5. Nevertheless,

5 Unfortunately, neither SMV nor NuSMV was able to check the specifications generated by our
compiler using bounded model checking, even though the specifications are simple safety and
liveness properties.

Verification of Data Paths Using Unbounded Integers: Automata Strike Back 77

Table 1. Runtimes for Averest benchmarks

Benchmark Beryl NuSMV SMV
BMC BMC GMC 8 bit 16 bit 24 bit 32 bit 8 bit 16 bit 24 bit 32 bit
AFA DFA DFA

BinarySearch 0,3 - 0,4 16,7 24,9 132,8 182,9 2,3 12,1 52,3 99,8
0,2 22,4 1,0 18,7 148,1 - - 12,6 - - -

BubbleSort 117,3 - 1,3 3,1 27,7 104,7 347,0 0,1 0,1 0,1 0,1
102,6 - 19,5 9,6 - - - 2,4 77,6 45,3 93,3

FastMax 0,1 0,8 0,2 1,3 26,9 47,2 398,9 0,0 0,0 0,1 0,1
0,3 1,8 1,8 3,6 - - - - - - -

LinearSearch 0,4 329,7 0,2 1,4 6,9 20,3 34,0 0,9 7,7 15,6 38,9
0,1 0,1 0,3 2,2 11,8 26,1 58,1 2,2 8,4 19,4 40,8

MinMax 0,6 - 1,5 5,6 254,1 - - 0,0 0,0 0,1 0,1
0,3 148,9 71,4 92,4 - - - 104,3 - - -

ParallelPrefixSum 1,3 - 39,6 4,1 37,5 235,9 - 0,1 0,1 0,1 0,1
7,3 - - - - - - 453,7 266,5 - -

ParallelSearch 0,2 - 8,9 1,4 8,7 11,0 40,6 1,1 1,8 5,7 29,7
60,6 541,7 8,6 3,7 22,4 17,6 37,1 1,9 3,7 11,1 19,5

Partition 1,1 - 14,0 147,0 - - - 39,7 208,2 - -
0,4 - 116,6 256,1 - - - 112,1 - - -

SortingNetwork4 0,2 149,7 0,3 1,0 35,5 143,1 344,8 0,0 0,0 0,0 0,1
0,1 174,7 0,9 74,5 - - - - 243,5 - -

SortingNetwork8 3,0 - - 534,2 - - - 0,0 0,1 0,1 0,1
2,1 - - - - - - - - - -

we list the results to compare our approach with sophisticated model checkers that are
frequently used in hardware verification.

The results for the SMT-LIB benchmarks are shown in Table 2, where we compared
Beryl with CVC Lite 2.56, MathSat 3.3.17, and Yices 0.28. We list only those bench-
marks that could be solved by at least one of the tools within five minutes. As can be
seen, the runtimes largely differ depending on the benchmark. For example, our ap-
proach clearly outperforms all other tools for the SIMPLEBIT_ADDER benchmarks
that could be solved up to size 10 using Beryl, whereas the other tools could only solve
them for size 5 (CVC Lite), 7 (MathSat), and 8 (Yices). For the FISCHER benchmarks,
however, the situation is converse. These benchmarks are most efficiently solved using
MathSat and Yices. For the remaining benchmarks, Beryl can in many cases compete
with the best tool and is usually much faster than the slowest tool.

To check satisfiability of a formula, our implementation currently constructs an AFA
A for the whole formula and then checks whether A is empty. Clearly, this is more than
necessary if the result only depends on some subformulas. A better approach is to check
subformulas lazily, i.e., by need. For that purpose, MathSat and Yices use an extension
of the DPLL procedure for propositional logic that often allows one to restrict the search
for a satisfying assignment to a small number of subformulas. As an example, given the
formula x ≥ 0 ∧ (p ∨ x + y = z), it suffices to prove that x ≥ 0 is satisfiable, provided

6 http://www.cs.nyu.edu/acsys/cvcl/
7 http://mathsat.itc.it/
8 http://yices.csl.sri.com/

http://www.cs.nyu.edu/acsys/cvcl/
http://mathsat.itc.it/
http://yices.csl.sri.com/

78 T. Schuele and K. Schneider

Table 2. Runtimes for SMT-LIB benchmarks

Benchmark Status Beryl CVC Lite MathSat Yices

ckt_PROP0_tf_15 sat < 1 24.9 42.2 < 1
ckt_PROP0_tf_20 sat < 1 - 66.0 < 1
FISCHER5-2-fair unsat 20.1 1.3 < 1 < 1
FISCHER5-3-fair unsat 2.3 2.9 < 1 < 1
FISCHER5-4-fair unsat 4.2 5.4 < 1 < 1
FISCHER5-5-fair unsat 96.9 9.6 < 1 < 1
FISCHER5-6-fair unsat - 15.1 < 1 < 1
FISCHER5-7-fair unsat - 29.5 < 1 < 1
FISCHER5-8-fair unsat - 67.6 1.9 < 1
FISCHER5-9-fair unsat - 116.4 4.1 < 1
FISCHER5-10-fair sat 38.0 - 1.8 < 1
MULTIPLIER_2 unsat < 1 2.3 < 1 < 1
MULTIPLIER_3 unsat < 1 32.1 < 1 < 1
MULTIPLIER_4 unsat < 1 172.9 1.2 < 1
MULTIPLIER_5 unsat 1.3 - 7.1 < 1
MULTIPLIER_6 unsat 5.6 - 42.1 1.0
MULTIPLIER_7 unsat 33.7 - 255.4 10.3
MULTIPLIER_8 unsat - - - 54.3
MULTIPLIER_64 sat 4.3 - < 1 < 1
MULTIPLIER_PRIME_2 sat < 1 abort < 1 < 1
MULTIPLIER_PRIME_3 sat < 1 segfault < 1 < 1
MULTIPLIER_PRIME_4 sat < 1 wrong < 1 < 1
MULTIPLIER_PRIME_5 sat < 1 abort < 1 < 1
MULTIPLIER_PRIME_6 sat < 1 - < 1 < 1
MULTIPLIER_PRIME_7 sat < 1 segfault < 1 < 1
MULTIPLIER_PRIME_8 sat < 1 - < 1 < 1
MULTIPLIER_PRIME_9 sat 2.2 - < 1 < 1
MULTIPLIER_PRIME_10 sat 2.6 - < 1 < 1
MULTIPLIER_PRIME_11 sat 3.6 - < 1 < 1
MULTIPLIER_PRIME_12 sat 4.8 - 1.0 < 1
MULTIPLIER_PRIME_13 sat 9.9 segfault 3.2 < 1
MULTIPLIER_PRIME_14 sat 25.6 - 6.2 < 1
MULTIPLIER_PRIME_15 sat 30.6 - 21.8 < 1
MULTIPLIER_PRIME_16 sat 16.1 - 67.3 < 1
MULTIPLIER_PRIME_32 sat 2.5 segfault < 1 < 1
MULTIPLIER_PRIME_64 sat 4.3 - < 1 < 1
SIMPLEBITADDER_COMPOSE_2 unsat < 1 < 1 < 1 < 1
SIMPLEBITADDER_COMPOSE_3 unsat < 1 3.8 < 1 < 1
SIMPLEBITADDER_COMPOSE_4 unsat < 1 51.6 1.1 < 1
SIMPLEBITADDER_COMPOSE_5 unsat < 1 70.0 5.3 < 1
SIMPLEBITADDER_COMPOSE_6 unsat 1.2 - 26.9 < 1
SIMPLEBITADDER_COMPOSE_7 unsat 7.2 - 231.3 5.2
SIMPLEBITADDER_COMPOSE_8 unsat 23.7 - - 94.3
SIMPLEBITADDER_COMPOSE_9 unsat 56.2 - - -
SIMPLEBITADDER_COMPOSE_10 unsat 115.0 - - -
wisa1 sat 3.4 8.8 223.5 < 1
wisa2 unsat - 113.8 - < 1
wisa3 sat 6.4 226.0 - < 1
wisa4 sat 4.1 28.0 - 1.1
wisa5 unsat - - - 6.1

Verification of Data Paths Using Unbounded Integers: Automata Strike Back 79

that p has already been set to true. Of course, such a lazy decision procedure can also
be used with the approach presented in this paper to check arithmetic and bitvector
formulas on demand.

6 Summary and Conclusion

We proposed a decision procedure for quantifier-free Presburger arithmetic with bitvec-
tor operations. The translation to alternating automata allows us to benefit from efficient
SAT solvers for checking emptiness of the automata using induction. This is necessary,
since formulas of the considered logic cannot always be reduced to a propositional for-
mula of polynomial size. The experimental results show that our approach can compete
with state-of-the-art decision procedures and is sometimes even more efficient. We plan
to combine the use of AFAs with quantifier elimination in order to support quantified
Presburger arithmetic. For that purpose, the translation has to be extended in order to
deal with congruences that occur during quantifier elimination.

References

1. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Leja, F., ed.: Sprawoz-
danie z I Kongresu Matematyków Krajów Słowiańskich, Warszawa 1929 (Comptes–rendus
du I Congrès des Mathématiciens des Pays Slaves, Varsovie 1929), Warszawa (1929) 92–101
(supplement on p. 395)

2. Lahiri, S., Seshia, S., Bryant, R.: Modeling and verification of out-of-order microprocessors
in UCLID. In Aagaard, M., O’Leary, J., eds.: Conference on Formal Methods in Computer
Aided Design (FMCAD). Volume 2517 of LNCS., Portland, USA, Springer (2002) 142–159

3. Büchi, J.: Weak second order arithmetic and finite automata. Z. Math. Logik Grundlagen
Math. 6 (1960) 66–92

4. Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite automata.
In Kirchner, H., ed.: Colloquium on Trees in Algebra and Programming (CAAP). Volume
1059 of LNCS., Linköping, Sweden, Springer (1996) 30–43

5. Wolper, P., Boigelot, B.: On the construction of automata from linear arithmetic constraints.
In Graf, S., Schwartzbach, M., eds.: Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS). Volume 1785 of LNCS., Berlin, Germany, Springer
(2000) 1–19

6. Klaedtke, F.: On the automata size for Presburger arithmetic. Technical Report 186, Institute
of Computer Science at Freiburg University (2003)

7. Ganesh, V., Berezin, S., Dill, D.: Deciding Presburger arithmetic by model checking and
comparisons with other methods. In Aagaard, M., O’Leary, J., eds.: Conference on Formal
Methods in Computer Aided Design (FMCAD). Volume 2517 of LNCS., Portland, USA,
Springer (2002) 171–186

8. Seshia, S., Bryant, R.: Deciding quantifier-free Presburger formulas using parameterized
solution bounds. Logical Methods in Computer Science 1(2:6) (2005) 1–26

9. Boigelot, B.: The Liège automata-based symbolic handler (LASH) (2006)
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/.

10. Janicic, P., Green, I., Bundy, A.: A comparison of decision procedures in Presburger arith-
metic. Research Paper 872, University of Edinburgh (1997)

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

80 T. Schuele and K. Schneider

11. Shiple, T., Kukula, J., Ranjan, R.: A comparison of Presburger engines for EFSM reachabil-
ity. In Hu, A., Vardi, M., eds.: Conference on Computer Aided Verification (CAV). Volume
1427 of LNCS., Vancouver, BC, Canada, Springer (1998) 280–292

12. Schuele, T., Schneider, K.: Symbolic model checking by automata based set representation.
In Ruf, J., ed.: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen, Tübingen, Germany, GI/ITG/GMM, Shaker (2002) 229–238

13. Strichman, O.: On solving Presburger and linear arithmetic with SAT. In Aagaard, M.,
O’Leary, J., eds.: Conference on Formal Methods in Computer Aided Design (FMCAD).
Volume 2517 of LNCS., Portland, USA, Springer (2002) 160–170

14. Kroening, D., Ouaknine, J., Seshia, S., Strichman, O.: Abstraction-based satisfiability solv-
ing of Presburger arithmetic. In Alur, R., Peled, D., eds.: Conference on Computer Aided
Verification (CAV). Volume 3114 of LNCS., Boston, MA, USA, Springer (2004) 308–320

15. Yu, S.: Regular languages. In Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Lan-
guages. Volume 1. Springer (1997) 41–110

16. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. International
Journal of Computer Mathematics 35 (1990) 117–132

17. Fellah, A.: Equations and regular-like expressions for AFA. International Journal of Com-
puter Mathematics 51 (1994) 157–172

18. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. Journal of the ACM 28(1) (1981)
114–133

19. Brzozowski, J., Leiss, E.: On equations for regular languages, finite automata, and sequential
networks. Theoretical Computer Science 10 (1980) 19–35

20. Leiss, E.: Succinct representation of regular languages by Boolean automata. Theoretical
Computer Science 13 (1981) 323–330

21. Leiss, E.: Succinct representation of regular languages by Boolean automata II. Theoretical
Computer Science 38 (1985) 133–136

22. Huerter, S., Salomaa, K., Wu, X., Yu, S.: Implementing reversed alternating finite automaton
(r-AFA) operations. In Champarnaud, J.M., Maurel, D., Ziadi, D., eds.: International Work-
shop on Implementating Automata (WIA). Volume 1660 of LNCS., Rouen, France, Springer
(1999) 69–81

23. Salomaa, K., Wu, X., Yu, S.: Efficient implementation of regular languages using r-AFA. In
Wood, D., Yu, S., eds.: International Workshop on Implementing Automata (WIA). Volume
1436 of LNCS., London, Ontario, Canada, Springer (1998) 176–184

24. Salomaa, K., Wu, X., Yu, S.: Efficient implementation of regular languages using reversed
alternating finite automata. Theoretical Computer Science 231(1) (2000) 103–111

25. Tuerk, T., Schneider, K.: Relationship between alternating omega-automata and symbolically
represented nondeterministic omega-automata. Internal Report 340, Department of Com-
puter Science, University of Kaiserslautern, http://kluedo.ub.uni-kl.de (2005)

26. Bès, A.: A survey of arithmetical definability. Bulletin of the Société Mathématique Belgique
(2002) 1–54

27. Bruyere, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of inte-
gers. Bulletin of the Société Mathématique Belgique 1 (1994) 191–238

28. von zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities and
inequalities. Proceedings of the American Mathematical Society 72(1) (1978) 155–158

29. Hardy, G., Wright, E.: An introduction to the theory of numbers. Oxford University Press
(1979)

30. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-
solver. In Hunt, W., Johnson, S., eds.: Conference on Formal Methods in Computer Aided
Design (FMCAD). Volume 1954 of LNCS., Austin, Texas, USA, Springer (2000) 108–125

31. Ranise, S., Tinelli, C.: The satisfiability modulo theories library (SMT-LIB) (2006)
http://goedel.cs.uiowa.edu/smtlib.

http://kluedo.ub.uni-kl.de
http://goedel.cs.uiowa.edu/smtlib

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 81–91, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Smart-Lint: Improving the Verification Flow

Itai Yarom and Viji Patil

Intel Corporation
Itai.Yarom@Intel.com, Viji.Patil@Intel.com

Abstract. As design features increase and sizes shrink and more transistors are
squeezed into a system-on-a-chip (SoC) IC, the sheer number of on-chip
devices far outstrips a design team's ability to harness the full benefits of all the
transistors. Furthermore, according to a Synopsys survey, one of the main
reasons for bugs in first silicon designs is logic bugs. To address those needs the
EDA community provides a large set of tools for the logic designer that
includes simulation, formal verification and linting among others. To fully
benefit from these tools, the logic design teams should use them as one
environment rather than as separate tools. In this paper, we will demonstrate
how this usage of linting, simulation and formal verification as one
environment can provide a solution that is greater than the sum of its parts.
Several groups at Intel from the Digital Enterprise Group (DEG) and the
Mobility Group (MG) are reporting good results by using this flow.

1 Introduction

The complexity of designs drives the need to introduce new tools and flows for the
supporting verification efforts. Those new techniques include assertion based
verification (ABV) [2, 8], coverage driven verification (CDV) [1] and formal property
verification (FPV). New languages and verification languages have been introduced
such as Open Verification Library (OVL), SystemVerilog assertions (SVA), ‘e’, Vera
and Property Specification Language (PSL) [3, 4, 5, 6 and 7]. Those new technologies
can improve the verification flow. On the other hand, more tools and technology
added to the verification flow means more work (unless they are used efficiently). We
believe that front-end tools will experience the same transition as in the
implementation flow. In the implementation flow we used to have several tools for
different parts of the flow (e.g., synthesis, place and route, DFT, static timing).
However, those tools are being replaced by one implementation tool that generates
GDSII from the RTL.

In this paper we propose the first step in the direction of having one front-end tool.
We present how the integration of a lint tool, with simulation and formal property
verification tools can provide value that is greater than its parts. The glue between
those tools is assertions. The assertions can capture the questions of structural analysis
of the lint tool, and answer them using the logic verification tools (i.e., simulation
and FPV).

This idea is not new. Mentor (0-in) is using assertion synthesis to verify clock
domain crossing (CDC) issues [9]. Other companies use assertion promotion for

82 I. Yarom and V. Patil

verifying the correctness of false-paths and multi-cycle paths [10, 11, and 12]. Our
contribution to the following is threefold. First, we use the assertion promotion
technique to provide an enhanced verification environment, by combining the
particular usages that we mentioned above. Furthermore, we extend this concept to
new areas like lint violation refinement. In addition to that, we provided additional
assertions to improve the existing verification flow. For example, we added a missing
synchronization checker to the clock domain crossing (CDC) checkers.

Fig. 1. The Smart-Lint flow

2 Smart-Lint

The idea of smart lint is to provide a single front-end environment like the silicon
implementation environment used for backend. The silicon implementation area
underwent a complete change. Several years ago we had several tools that when
combined together provided the silicon implementation flow. For example, we had a
synthesis tool, place and route tool, static timing analysis tool and extraction tool.
However, today we have a silicon implementation environment that combines all
those engines and capabilities together. We still have the above engines under the
hood, but we have a common database that they all work on. And using the entire
silicon implementation environment provides better performance over using each
element separately. The question is how can we perform the same transition to the
front-end environment?

To perform this transition we take advantage of three key tools, Lint, simulation
and formal property verification (FPV). Those tools have different capabilities. The
Lint understands the design structure, but it doesn’t understand their behavior. The

 Smart-Lint: Improving the Verification Flow 83

simulation and formal tools understand the design behavior, without needing to know
the structure.

For example, a lint tool can detect synchronization structures, which can be as
simple as a 2-FF synchronization scheme. However, it cannot verify that the target
client receives all the data passing through the synchronization. This can be verified
using simulation or formal techniques.

We use assertions as the glue between the lint and the simulation and the formal
tools. Assertions provide the ability to ask questions on the design behavior.
Returning to our example, the lint tool wants to verify the data stability passing in the
2-FF synchronizer. Therefore, it can generate an assertion that checks that the data-in
of the synchronizer is stable long enough so that the data out of the synchronizer will
detect it.

The smart-lint technology is independent of the lint, simulation and formal tools
being used. The same technology can be used with tools from a mix of vendors.
However, we believe that in the future, this kind of technology will be part of the
front-end environment and will provide benefit from using one vendor environment.
In the next sub-section we describe the structure of the smart-lint environment, and
follow with three usages of this technique in different design areas.

2.1 Smart-Lint Implementation

There are several options on how to implement the smart-lint flow. We chose a flow
that will enable us to easily plug it in our verification environment and to be able to
seamlessly plug-in any Lint tool we desired (see figure 1). To achieve this we use an
XML based uniform violation report format as an input for the environment.
Therefore, for plugging a new Lint tool to the environment you need to provide the
violations in this format. Synopsys’ LEDA and Atrenta’s SpyGlass have an API
interface for generating reports in the desire format, which is very useful in this case.
An alternative solution is to convert the lint output to the desired format, which is less
convenient and adds another step to the flow.

The next step is to identify the violations that we want to further explore and what
kind of checks we want to perform. For example, for missing synchronization
message we want to add a checker that checks whether a synchronizer is needed.
Another example can be of a checker that verifies that there is no contention on a tri-
state bus.

To generate the checkers out of the violation report, the tool needs to understand
where this block is placed in the verification design. Therefore, the designer provides
a prefix from the top of the verification to the lint top module. This prefix is added to
the signal names that appear in the violation report. The checkers can be generated as
one verification module or in separate modules divided by the checkers type or by
hierarchy. Dividing the checker modules can be useful for controlling which checkers
we want to use. The checker files can be added to the verification environment, which
can be a simulation or formal based environment. Adding the checkers to the
verification environment is easy because of the full hierarchy name of the signals.

84 I. Yarom and V. Patil

Fig. 2. An example of reconvergence of two
synchronizations

Fig. 3. Fanouts into multiple synchronizers

Fig. 4. An example of glitch scenario

Fig. 6. An example of usage of FIFO for
synchronization

Fig. 5. An example of fast to slow clock
synchronization

2.2 Clock Domain Crossing

Typical modern chips have many clock domains, driven by SOC integration (more
asynchronous clocks) and higher clock frequencies (skewed synchronous
clocks).Many design teams are being forced to redesign to reduce domains and risk.
Poor management of Clock-Domain Crossing (CDC) signals is a major cause of

 Smart-Lint: Improving the Verification Flow 85

re-spins. Traditional verification techniques do not work for CDC signals. CDC
problems are subtle, will occur in hardware, and are complex to debug.

Therefore there is a need to specifically verify and automate CDC verification,
thereby significantly reducing the risk of CDC related silicon respins. Common CDC
scenarios that need to be verified are listed:

• CDC Reconvergence: Data correlation problems in downstream logic can cause
functional errors (see figure 2).

• Fanouts into multiple synchronizers: One signal that is being synchronized several
times can result in correlation issues of the synchronized data (see figure 3).

• Glitch scenario: Combinational logic between flip-flops can cause a glitch to
propagate into downstream logic causing functional errors (see figure 4).

• Fast to slow clock: Signal is synchronized correctly for meta-stability but can
drop fast pulses from source domain. Example illustrates general data-hold check
(see figure 5).

• Gray Code check: to resolve time racing between the different signals of a bus, a
Gray code technique will ensure that only one bit of the bus changes at each time.
Furthermore, this behavior can occur with two signals that are synchronized
separately and drive the same logic (see figure 2). Other synchronization schemes
include handshake and FIFO synchronization (see figure 6).

How to handle legacy code with a lot of false violations of missing

synchronization? Most Lint tools that perform CDC checks (and stand alone CDC
tools) use a basic control file, which is used to set controls on how to run CDC
analysis. The warnings produced can help you further refine your control file and
allow the tool to produce meaningful results. For example, by adding a checker that
will identify signals that are not synchronized and do change. Those signals need to
be synchronized. However, we don’t need to use synchronization for signals that are
static. To perform this check we use the assert_missing_sync checker, that checks
whether a signal changes during the simulation or not. By defining this checker as a
synchronizer we move the violation from the lint to the verification tools, and the
verification tools notify only on the potential bugs.

To handle reconvergence and Gray code cases, using the OVL assert_one_hot
checker in the following way can work (which we bundle in a new checker
assert_gray_code):

assert_one_hot #(0,SIZE) aoh1 (clk, !rst_l,
 decoded_bus^prev_decoded_bus);

always @(posedge clk) prev_decoded_bus<=decoded_bus;

For checker that there is no data lost, we use an assert_data_stable checker, that
ensures that the data is stable for the desired period of clock cycles (provided as a
parameter). Other checkers can be used for different synchronization algorithms, like
handshake.

86 I. Yarom and V. Patil

2.3 Lint Closure

How to automatically refine the lint violation list to show only the important
violations? One of the common comments on lint tools is how can we refine the tool
reports in a way they will identify the important issues. Several techniques were used,
including sorting the violations in groups, different level of errors and so on.
However, the solution that was often used was a human sorting the violations and
marking the important ones. Can we improve this work of violation sorting?

Table 1. The checkers that can be generated automatically

Lint has a problem when coming to sort violations because it has no knowledge of
the functionality of the design. Therefore, it cannot answer on questions like do we
have a contention on a tri-state bus? Is this combinational loop stable? Might this
unconnected net be an issue? Do I have an unknown value in one of the states of a
state machine?

To answer those and other questions a verification tool is needed. For the example
of the tri-state bus or other signals that have multiple drivers, we can use a checker
that monitors that only one of them is active. In that way, we can identify the cases
that the bus is driven by multiple drivers. Furthermore, the level of guaranty that you
achieve by using simulation might not be enough, and a formal verification might
help. In cases like combinational loops, you usually don’t want to have any in your
design to start with. However, if the combinational loop appears in a legacy design,
you have to decide whether you want to make any changes to this design. Therefore, a
checker that verifies whether the loops might be unstable can help you to answer this.
An example of those and other checkers can be seen in Table 1.

 Smart-Lint: Improving the Verification Flow 87

In the end of the day, the number of violations that a designer can handle a day is
limited. Getting hundreds or even thousands of violations provides you no indication
on what you need to do first. However, reducing those numbers to tens of violations
provides you a better understanding of the major issues in the design. What you do
with the rest of the violations is up to you and it depends on schedule, is it legacy
code or not and what is the level of guaranty you have with the design.

Fig. 7. An example of FIFO structure, coverage points and monitor implementation

2.4 Structural Coverage

How would you measure the verification progress? One approach is to use functional
coverage. Functional coverage uses coverage points provided by the design and the
verification teams. The functional coverage points measure the types of operation that
are being executed on the design. Those coverage points are defined according to the
design specification. To measure and identify which structures of the design are being
covered we are using the code coverage measurement. Code coverage can measure
which line of code is being used, do we use all the branch options, and so on. Usually
those we use both the functional and the code coverage measurements. Are those
measures enough?

In order to answer the question we will use an example. We would like to verify a
design that collects requests for three clients. Using the functional coverage we will
measure the types of request scenarios that are being used. The code coverage will
measure how well those scenarios cover the code and branches. However, how will
we measure the usage of the FIFO that collects the requests? How will we measure
whether the FIFO is being full or empty?

88 I. Yarom and V. Patil

To address the following we introduce a new coverage measurement – structural
coverage. The lint tools have the advantage of knowing the structure of the design.
They can locate structures like memories and busses. The lint tool can help to add
coverage monitors for those structures. Those monitors will provide coverage
information that is based on the structure of the design and therefore we refer to them
as structural coverage monitors. In cases that some of the information for the monitor
cannot be extracted automatically, the user will need to fill out the missing
information in the monitor. For example, a lint tool can identify a FIFO memory
structure (see figure 7). The FIFO monitor checks provide coverage information that
includes the numbers of read and write actions, and whether the FIFO was full. One
of the pieces of information the FIFO monitor needs is to identify the pop and push
signals of the FIFO.

Fig. 8. Three types of timing violations: (top) is a false-path between asynchronous clock domains,
(middle) is a logic false-path in the same clock domain and (bottom) is a multi-cycle path

2.5 Timing Constraint Verification

This area is one of the hot ones with a lot of companies and technology. The
technology addresses two main ideas, one is generating timing constraints and the
second is verifying existing constraints. As for timing constraints, there are three

 Smart-Lint: Improving the Verification Flow 89

types as can be seen in figure 8: false-paths between asynchronous clock domains (A-
FP), false-paths between synchronous clock domains (S-FP) and multi-cycle paths
(MCP). It’s important to note, that A-FP is correct by definition and the verification
for this path is whether it’s correctly synchronized. As for the S-FP and the MCP, the
verification is done logically from the design behavior. The S-FP and MCP are
addressed by tools available in the market, while none of the tools address the A-FP.

The lint tools are familiar with the design clocks and they can verify the
correctness of the synchronization schemes. Furthermore, they can handle those
issues earlier in the design flow, which helps to improve the interactions of the design
and the implementation teams. Furthermore, we can use the Lint tool to generate the
clock definitions and the A-FP in SDC format.

3 Experiences at Intel

The flow of smart-lint is in the implementation phases in Intel and some projects
started to use it. Using the smart-lint flow enables the projects to find bugs that they
wouldn’t find otherwise. Furthermore, the smart-lint flow improves the effectiveness
of the verification flow. For example, in a FSM a designer assumed that moving to a
certain state the value of a certain signal was already set. However, the formal tool
found a counter example in a special situation that this assumption wasn’t correct.
This kind of bug can be found using the FSM monitor. Below you can find additional
two examples, of how the smart-lint flow can be used for clock domain crossing
(CDC) and timing constraint verification (TCV) flows.

Example: Sunrise lake FSENG unit
Issue: There were about 1000 violations of different kinds starting from two signals,
namely, protocol and mmr_proto_rst_n. Especially for the violation groups
“Combinational logic before synchronizer” and “Signal feeds to the asynchronous
reset port of the receiving register has no synchronizer”
Design data: mmr_proto_rst_n is intentionally OR’ed before driving the flop’s reset
to maintain an asynchronous assertion. However synchronous deassertion is
guaranteed.

And signal protocol is static (it is a fuse option). There was a need to filter these out.

Solution: To resolve this we want to waive those signals from the report of those
particular violations. Then we want to be sure that the waiver is correct. To perform
both of those tasks we can use the following checkers:

assert_guaranty_by_design deassertion_ok (.in(mmr_proto_rst_n_in),
 .out(mmr_proto_rst_n));

assert_missing_sync protocol_sig (.in(protocol_in), .out(protocol),
 .clk(clk), .rst(!rst_l));

90 I. Yarom and V. Patil

You should note that the assert_guaranty_by_design checker is assigned by the user
to mark that she or he is aware of the synchronization issue. The assert_missing_sync
checker is assigned automatically by the smart-lint environment. This checker makes
sure that the signal in is static. Furthermore, we use those checkers to waive the CDC
violations by defining them as synchronizers.

Example: ICH8, Nahum block
Issue: There were ~100K false-paths between asynchronous clocks to be verified (as
reported by the static timing tool like Synopsys PrimeTime).
Solution: To resolve this we need to check that the false-paths are correctly
synchronized. Therefore using Lint tool for this task is preferred. The number of
violations using the Lint CDC flow was ~3K, where 1K were related to false-path and
the rest were other CDC issues. To further refine the 1K CDC violations, we used the
assert_missing_sync checker that removes the static signals from the violation list.
This reduces the list of violation to several hundreds, which is significantly smaller
compared to the original 100K.

4 Summary

The smart-lint flow provides a way to improve the lint results by reducing the number
of violations to the ones that affect the chip behavior. Therefore, the smart-lint
provides one of the major improvements in lint technology in several years.
Furthermore, the smart-lint flow is the first step to having a unified environment for
design and verification. We don’t want to have a ‘bunch of tools’ to work with, we
want an environment that will work together flawlessly. When we used the smart-lint
flow in Intel, it helped to find bugs more easily and got good feedback from the users.
In summary, the smart-lint flow provides benefit in concept and in practice.

Acknowledgments

I would like to thank Alex Panich who helped to implement the smart-lint
environment, Michael Zuckerman who is the lint master and Shalom Bresticker for
his help with the development of the paper.

References

[1] Indicators help manage coverage-driven verification, Akiva Michelson, EETimes 2005.
[2] Assertion-Based Design, Harry Foster, Adam Krolnik and David Lacey, Kluwer

Academic Publishers, 2004.
[3] IEEE Open Verification Library Assertion Monitor Reference Manual, June 2003.
[4] IEEE Std 1850-2005, Property Specification Language (PSL).
[5] IEEE Std 1800-2005, SystemVerilog.
[6] eLanguage Reference manual, available at www.ieee1647.org.
[7] OpenVera Language Reference Manual, December 2003.

 Smart-Lint: Improving the Verification Flow 91

[8] Synopsys Verification Methodology Manual (VMM) for SystemVerilog, Janick
Bergeron, Eduard Gerny, Alan Hunter and Andrew Nightingale, Springer 2005.

[9] Four Pillars of Assertion-based Verification, by Ping Yeung, 0-In Design Automation,
DesignCon 2004.

[10] Assertion-Based Verification of Timing Exceptions, FishTail-DA/Focus Application
Note 2005.

[11] Indigo RTL Analysis Datasheet, Blue Pearl Software 2006.
[12] Validation Design Constraints with Conformal Constraint Designer (CCD), CTC-2005.

Model-Driven Development with the jABC

Bernhard Steffen1, Tiziana Margaria2, Ralf Nagel1, Sven Jörges1,
and Christian Kubczak1

1 Chair of Programming Systems, University of Dortmund, Germany
{steffen,nagel,joerges,kubczak}@ls5.cs.uni-dortmund.de

2 Chair of Service and Software Engineering, University of Potsdam, Germany
margaria@cs.uni-potsdam.de

Abstract. We present the jABC, a framework for model driven appli-
cation development based on Lightweight Process Coordination. With
jABC, users (product developers and system/software designers) easily
develop services and applications by composing reusable building-blocks
into hierarchical (flow-) graph structures that are executable models of
the application. This process is supported by an extensible set of plugins
providing additional functionalities, so that the jABC models can be ani-
mated, analyzed, simulated, verified, executed and compiled. This way of
handling the collaborative design of complex software systems has proven
to be effective and adequate for the cooperation of non-programmers and
technical people, and it is now being rolled out in the operative practice.

1 Lightweight Process Coordination

jABC[2] is a mature framework for service development based on Lightweight
Process Coordination [29]. Predecessors of jABC have been used since 1995 to
design, among others, industrial telecommunication services [30], Web-based dis-
tributed decision support systems [19], and test automation environments for
Computer-Telephony integrated systems [16].

jABC allows users to easily develop services and applications by composing
reusable building-blocks into (flow-) graph structures. This development process
is supported by an extensible set of plugins that provide additional functional-
ity in order to adequately support all the activities needed along the develop-
ment lifecycle like animation, rapid prototyping, formal verification, debugging,
code generation, and evolution. It does not replace but rather enhances other
modelling practices like the UML-based RUP (Rational Unified Process, [3,15]),
which are in fact used in our process to design the single components.

Lightweight Process Coordination (LPC) [29] as a service-oriented, model-
driven development approach, offers a number of advantages that play a partic-
ular role when integrating off-the-shelf, possibly remote functionalities:

– Simplicity. jABC focuses on application experts, who are typically non-
programmers. The basic ideas of our modelling process have been explained
in past projects to new participants in less than one hour.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 92–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model-Driven Development with the jABC 93

Fig. 1. Layered Architecture of jABC Applications

– Agility. We expect requirements, models, and artefacts to change over time,
therefore the process supports evolution as a normal process phase.

– Customizability. The building blocks which form the model can be freely
renamed or restructured to fit the habits of the application experts.

– Consistency. The same modelling paradigm underlies the whole process,
from the very first steps of prototyping up to the final execution, guarantee-
ing traceability and semantic consistency.

– Verification. With techniques like model checking and local checks we sup-
port the user to consistently modify his model. The basic idea is to define
local or global properties that the model must satisfy and to provide auto-
matic checking mechanisms.

– Service orientation. Existing or external features, applications, or services
can be easily integrated into a model by wrapping the existing functionality
into building blocks that can be used inside the models.

– Executability. The model can have different kinds of execution code. These
can be as abstract as textual descriptions (for example in the first animations
during requirement capture), and as concrete as the final runtime implemen-
tation.

– Universality. Thanks to Java as largely platform-independent, object-
oriented implementation language, jABC can be easily adopted in a large
variety of technical contexts and of application domains.

The basic idea of Lightweight Process Coordination is to add a coordination
layer to the generally well established three tier architecture. This coordination
layer spans the application and services layers of Fig. 1. It is a purely model
driven development layer, created and managed within a graphical interactive

94 B. Steffen et al.

tool: the Java Application Building Center (jABC). In jABC, users build co-
ordination models by arranging predefined building blocks simply by drag and
drop. These basic building blocks are called SIBs (Service Independent Building
Block). SIBs have one or more outgoing edges (branches), which depend on the
different outcomes of the execution of the functionality represented by the SIB.

As an example we may use a SIB called CreateBooking, which prepares a
modification in a database. This SIB could have three branches, labelled Suc-
cessful, DataError and DatabaseError, showing the difference between a correct
execution, an error caused by invalid featured data, and an error caused by a
problem with the database.

Two groups of users work collaboratively on a LPC standard model:

– SIB Experts, who are (Java) developers with detailed knowledge about the
development of SIBs and appropriate plugin interfaces, and

– Application Experts, who have detailed knowledge about the process or
application under realization, but are not programmers and may not even
have a technical background.

As shown in Fig.1, application experts model the business logic of the applica-
tion from existing SIBs that correspond to components or basic services, and
from instances of a special SIB used as placeholder for functionalities not yet
implemented. If an application needs additional SIBs, the application expert can
use the placeholder to define name, appropriate parameters and branches on his
own, using the SIBCreator Plugin. Adding real functionality to the SIB is done
in cooperation with the SIB expert, on the basis of the specification of the SIB
and possibly also of the business logic model (called Service Logic Graph or
SLG) of the application.

SIB experts take care of implementing missing SIBs, of the integration of
legacy systems and components at the SIB level, and of the persistency layer.

Feature-Oriented Descriptions. The terminology SIB and SLG is taken from the
context of Intelligent Networks, a successful telecommunications domain which
was among the first to standardize a service-oriented architecture and develop-
ment methodology [23,24], also in connection with features (here seen as basic
services). In fact, the jABC methodology instantiates those concepts as follows:

Definition [Feature-oriented Description]

1. A feature-oriented service description of a complex service specifies the be-
haviours of a base system and a set of optional features.

2. The behaviour of each feature and of the basic system are given by means
of Service Logic Graphs (SLGs) [24].

3. The realization of each SLG bases on a library of reusable components called
Service Independent Building-Blocks (SIBs).

4. The feature-oriented service description includes also a set of abstract re-
quirements that ensure that the intended purposes are met.

Model-Driven Development with the jABC 95

5. Interactions between features are regulated explicitely and are usually ex-
pressed via constraints in temporal logics.

6. Any feature composition is allowed that does not violate any constraint.

Hierarchy and Refinement. Each SLG model can be wrapped into a single
coarser-grained SIB, and may be used on another hierarchical level of mod-
elling. Similarly, each SIB can be refined into an own model, showing a more
detailed view on the represented feature. This way we support both a top-down
and bottom-up application modelling process.

In the remainder of the paper we present the basic components of the complete
jABC toolbox. Sect. 2 and 3 give a more detailed overview of the jABC. In Sect.
4 and 5 we focus on the included verification and analysis tools (the local- and
model checker). The jABC Tracer, used to animate, simulate, interpret, and
debug at the coordination level is presented in Sect. 6. In Sect. 7 we present the
jABC code generator, which is itself constructed by means of the jABC, as a
LPC process. In Sect. 8 we discuss related approaches and in Sect. 9 we present
our conclusions.

2 The Java Application Building Center

The jABC is meanwhile the fourth generation of this framework [34], with C++
precursors dating back to 1992 [33]. Thanks to Java we are largely platform
independent: jABC runs wherever a JVM is available, solving this way many
portability and interoperability issues of its precursors. jABC is at the same
time used as a commercial product in several projects with industry, and as a
teaching and experimental platform for our students. This is possible thanks to a
plugin framework concept which supports the easy replacement of almost every
part of the system and the easy addition of new (customer-specific) features.

Handling Basic Services. Java simplifies the handling of SIB components too -
a single Java class contains all the required or optional information:

– the name is represented by the Java class name,
– the parameters are defined as the public fields of the class,
– the branches are represented by the reserved field branches, which can be

optionally flagged as final,
– the graphical representation in the drawing canvas is the picture returned by

the getIcon() method,
– the online documentation for the SIB, its parameters and branches, are re-

trieved via the getTooltipText() method, and
– optional information for animation, simulation, analysis, etc., are encapsu-

lated with plugin-specific interfaces. For example, the interface Tracer con-
sists of the defined method onTrace().

96 B. Steffen et al.

Fig. 2. jABC Big Picture

SIB Palettes as Taxonomies. At runtime, the jABC discovers and analyses the
compiled SIB class files and generates a structured representation of the available
SIBs for the application experts. The SIBs are presented as a taxonomy, as in
Fig. 3(upper left), which shows on the canvas the model of the code generator.
This taxonomy is a tree representation of a directed acyclic graph. A SIB can
thus appear there several times, even with different names.

Different to standard Java classes, the physical class package of the SIB is
irrelevant for the jABC: the SIB description achieves this decoupling. The jABC
replaces unavailable or deleted SIB classes with the ProxySIB, a specific place-
holder, and protects the model from information loss. If the graph is stored again,
the information of the missing SIB is kept; if the SIB becomes available again,
the model will automatically load the correct SIB. Even after refactoring a SIB
class, older models referencing such a SIB will use the correct class.

Meaning of the Coordination Graphs. The basic jABC System does not define a
standard semantics for graphs: at this point, SLGs are purely structural descrip-
tions that can be printed, layouted, edited, but have no meaning. This meaning is
given by different jABC-plugins, like the Tracer already mentioned. The Tracer
interprets an SLG as a flow graph with one or more distinguished start nodes
and is able to execute it. The Tracer defines an own Java interface that contains

File Edit

JavaABC

SIB Class /

Browser
Taxonomy

SIB Graph Canvas

Eclipse (IDE)

JAVA Class
Browser SIB Plugin

SIB
Java
Class

SIB Expert (Implementation) Application Expert (Modeling)

Taxonomy

s
ni

g
ul

P
C

B
A

CodeGenerator

Tracer

Local Check

ModelChecker

SIB Parameter
BRANCHES
SIB-UID

SIB Java Class

LocalCheck Code

Tracer Code

CodeGenerator

Eclipse IDE

jABC Project Folder

Version Control System

XML
Graph
File

jABC-Eclipse
Integration

...

Model-Driven Development with the jABC 97

Fig. 3. Working with the jABC: Modifying the SLG of the Code Generator

all methods it can execute for a SIB. To support a Tracer execution, a SIB must
implement this Tracer interface. Missing interface implementations are semanti-
cally empty, thus the corresponding plugin simply stops executing.

3 Overview of the jABC Architecture

Fig. 2 shows an overview of the complete jABC development system. The work
with the jABC is organized in projects, which are seen as local storage folders.
Users can define multiple projects, but only one at a time is active. A project
folder contains all the elements (files and materials) needed for a model, even if
not necessarily needed by the jABC. By versioning this folder with a versioning
system (like CVS) it is possible to retrieve arbitrary older versions of a model
and to distribute model changes to all project members. Currently, the rights
and roles management within a project is delegated to the underlying versioning
system.

There is no prescribed development environment for the jABC SIBs: it is
possible to use any compatible Java development application (even vi and javac).

98 B. Steffen et al.

Plugin Description local global internal interface
BeanShell Scripting facilities

√ √

CodeGenerator Model compilation
√ √

FormulaBuilder Visual formula modelling
√ √

DBSchema ER-diagram modelling
√ √

Docbook Documentation for jABC projects
√ √ √

Eclipse Eclipse integration for jABC
√ √ √

GEAR mu-calculus Model checker
√ √

jETI Integration of remote services
√ √

JEEWAB Web technologies support (e.g. J2EE)
√ √

jMosel Verification with M2L
√ √

LearnLib Automata Learning & Experimentation
√ √

LocalChecker Local SIB verification
√ √

SIBCreator Automatic SIB generation
√ √

Taxonomy-Editor SIB taxonomy customization
√ √

Tracer Model execution
√ √ √

Fig. 4. Summary of available jABC Plugins

We use Eclipse [1] because it utilizes a similar plugin approach. SIB experts
implement SIB Java classes in close collaboration with the application experts.
Different to the usual CVS setup, the SIB expert commits both SIB source and
class files to the project repository. In fact, jABC does not compile any source
files, it just scans for available SIB classfiles, which are then retrieved from the
common project CVS.

The application expert uses the jABC at a completely graphical level to model
the application. The pure modelling activity can be complemented by analysis,
animation, verification, and execution, which come together with a set of plu-
gins. Usually the set of plugins corresponds to the implemented interfaces in
the SIBs.

In the following, we describe the central plugins, which are part of the standard
jABC distribution. Fig. 4 shows a list of currently available jABC plugins, here
classified according to distinguishing criteria for their nature and aim:

– SIB-level plugins are locally scoped in the sense that they concern single SIBs,
while SLG-level plugins are globally scoped, since they handle whole SLGs,

– jABC internal plugins which are used inside the jABC, and interface plugins,
that provide functionality that interfaces the jABC framework with other
worlds, like Webservices, databases, or ERP systems like SAP.

According to the full lifecycle of applications built with the jABC, depicted
in Fig. 5, we see that the jABC core, which includes the Local Checker and
the Tracer plugins, is used along the full development cycle. Other plugins are
more phase specific, like the ITE (Integrated Test Environment) [16] and the
LearnLib [7] plugins, which focus on the runtime.

Model-Driven Development with the jABC 99

Fig. 5. Model Based Lifecycle Management in jABC

4 The LocalChecker

The LocalChecker-plugin checks whether some assertions (expressed in Java)
concerning the single instance of this SIB hold. These assertions are locally
specified and concern the correct use of this SIB in its immediate neighbourhood.
They concern single instances of user-defined SIBs. They can be used to check
the value of a SIB parameter or some conditions of a branch. While relating to
many different parameters or branches of a SIB-instance at once, the assertions
can be free in complexity yet always simple in the definition formalism. They are
formulated in plain Java code, therefore the whole power of the Java language
could be used to implement and analyse such properties.

The main advantage of using Java code for local check definitions is that
it enables runtime checking of non-trivial properties of a SIB-instance, more
involved than standard abstract interpretations. One could for instance need to
know whether a given attribute value is contained in an external database. This
can be simply solved by embedding the database query in the local check code.
For many common checks relating to SIBs and their branches the corresponding
rule implementation is already provided with the LocalChecker-Plugin itself,
simplifying the use and helping users to reduce the amount of additional work.

As an example consider a SIB representing a table in a database: the name
of this table must neither be empty nor too long, it should only consists of valid
characters and may not be a reserved word of SQL. In the LocalCheck code the
SIB experts test all these different criteria with corresponding Java statements
and create warning or error messages, which are presented by the jABC GUI to
the user and help users to correct the problems.

5 Model Debugging Via the ModelChecker

Even at an early modelling stage requirements, properties, and general frame
conditions emerge which have to be fulfilled by a system or an application.

100 B. Steffen et al.

Besides very local requirements, which only relate to particular parts of a system
and which can easily be checked using the LocalChecker, there are also global
requirements which are associated with the entire system. These requirements
are often very intuitive, are independent of the concrete model, often are part
of the rules of the game for an application domain, and can be easily expressed
by the application expert during the business logic modelling. E.g., in a web
application a logout can only be performed if there was a login at some earlier
point in time.

In the last years model checking [8,32] has established itself as a powerful
approach to automatic verification of systems. It provides an effective way to
determine whether a given system is consistent with a specified property. The
jABC framework incorporates this technique via a core plugin called GEAR
[6]. Intuitively, any system modelled as SLGs can be verified with this plugin:
SLGs consist of SIBs holding labels that the model checker interprets as atomic
propositions (for example the SIB names), and have edges annotated with branch
names that for the model checker represent actions. Fig. 3 shows an example of
such a SLG which models the core part of the jABC code generator for Java
classes (see Sect. 7). Properties of such a model have to be specified using ap-
propriate formalisms, in the case of GEAR these are temporal logics, for example
CTL (Computation Tree Logic) or the modal μ-calculus [21].

GEAR augments the GUI of the jABC with specific functionalities that enable
the user to:

– equip the individual SIBs of a model with atomic propositions,
– add and describe properties,
– check properties for a particular model and
– interactively investigate the error diagnosis information by playing model

checking games.

As formal specifications of properties are basically formulas in a temporal logic,
which are usually difficult to create and to understand without the required
theoretical knowledge, GEAR provides two separate views for using the plugin.

– The basic view is designed for users that are unfamiliar with temporal logic-
based specification formalisms. Properties here are displayed as natural lan-
guage descriptions which are tagged according to their validity in the model
of interest. E.g., green highlighted properties in Fig. 6 are verified and red
highlighted are disproved.

– The advanced view addresses experts who know how to create properties
using CTL or the modal μ-calculus. If the user enters a formula, its syntax
tree is immediately visualized, so that all corresponding subformulae are
directly visible. The user may invoke model checking for the whole formula
or just for one of its subformulae - the satisfying nodes in the model are then
marked accordingly. It is also possible to do reverse checking, by using the
model checker in the opposite direction. By selecting a subset of nodes in
the model of interest it is immediately possible to see which subformulae are
satisfied by the selected nodes.

Model-Driven Development with the jABC 101

Fig. 6. Using the GEAR Model Checker and the FormulaBuilder

To further improve the accessibility of property specifications, the Formula-
Builder plugin [18,17] can be used in conjunction with GEAR. With the For-
mulaBuilder, also formulae can be modelled as SLGs. Fig. 6 right shows the
collection of SIBs for CTL operators. Users can create such graphs also by us-
ing commonly-occurring specification patterns based on a system proposed by
Dwyer, Avrunin and Corbett [12,11].

Fig. 6 bottom left shows an example of pattern usage: this formula graph cor-
responds to the template used for the third property checked on this graph: No
login after too many errors. It uses the patterns Global Precedence and Global
Response. The Global Precedence pattern expresses the following property: Glob-
ally, the occurrence of S has to be an enabling condition for the occurrence of P.
In Fig. 6 S and P are instantiated to the values Login resp. Global Response, so
the whole graph models a property that uses hierarchical patterns. From this sim-
ple and intuitive graph visualization the FormulaBuilder generates a mu-calculus
formula that can be stored, or directly used for model checking in GEAR, for
example to verify whether a web application modelled with the jABC satisfies
the property.

102 B. Steffen et al.

The manual creation and the comprehension of such formulas is a known
difficult task, thus GEAR and the FormulaBuilder together provide an expressive
and accessible way for users, even for application experts lacking the theoretical
background, to enjoy the benefits of model checking. This goes well in line with
the basic goals of LPC we described in section 1.

Being a game based model checker, GEAR also supports interactive error
diagnosis by computing and animating winning strategies for modal mu-calculus
model checking games. Details on this use go beyond the scope of this paper,
and are available in [35,31,36].

6 The Tracer

The Tracer plugin adds an execution layer for SLGs to the jABC. The model
is thereby interpreted as a directed control flow diagram which can be traced
comparable to a standard debugger in run mode or step mode and using break-
points or pause to stop the execution. This is done by the Tracer by taking the
SIBs from a model as an input to create execution threads, called Tracer threads.
Each thread contains a number of linear execution steps and is executed by the
Execution environment of the Tracer, as illustrated in Fig. 7(a).

6.1 The Execution Environment

The execution environment as mentioned above is a runtime environment for the
Tracer. For each Tracer thread to be executed, the execution environment uses
exactly one execution stack containing a single execution context. By doing so, the
Tracer can execute recursive threads, as variables and invariants are available
inside each context. In addition to the execution contexts bound to a single
thread there are other contexts with a more global scope. They are available to
different SIB instances and they can mutually communicate. Thereby, a global
context could also be available through remote interfaces like RMI or JNDI,
causing a communication between locally separated models or SIBs. The global
execution contexts are usable for different kinds of tasks, for example a context
for all available objects or one for just some special kinds of objects.

6.2 Parallel Execution

In general a SIB represents an application feature within the jABC, but it cannot
modify the control flow of a modelled application. While talking about a standard
SIB, all branches are treated as alternatives. A ControlSIB overwrites this default
setting of a branch and allows choosing two branches in parallel, synchronizing
branches, or passing messages between SIBs.

The Tracer is able to execute threads in parallel by using two ControlSIBs:
ForkSIB and JoinSIB. A fork divides a thread in any number of subthreads
which are independently executed (see Fig. 7(b)) by stopping the current thread
and starting a number of new threads. The Tracer waits for each single subthread

Model-Driven Development with the jABC 103

Fig. 7. The Tracer: (a) overview and (b) fork/join parallelism

to end, then the JoinSIB terminates all the subthreads and starts a new single
thread to continue the execution of the whole model.

Finally, a whole model can be transformed into a single SIB, called a Graph-
SIB. These ControlSIBs could be seen in terms of control macros, as they obfus-
cate complex structures to the user by building a hierarchical control structure
within large models.

6.3 Remote Debugging Tool

To comfortably handle the Tracer, the Remote debug tool plugin provides a GUI
that offers all the features of the Tracer, like starting an execution or executing
only a single step. The viewed hierarchy can be chosen freely, allowing the user
to control a special scope of the traced model. To visualize the tracing of a graph,
the SIBs visited by the Tracer are highlighted during execution. By supporting
different underlying communication protocols (like RMI, SOAP, CORBA) the
debug tool truly gets ”remote” and therefore it could be even used to control
separate tracing processes on different machines (e.g. over the internet).

7 The Code Generator

Once a jABC application is ready for deployment, the current version of the
model is often transformed into an executable and deployable piece of code in a
desired programming language. This is supported by the jABC Codegenerator
plugin, which currently allows generating the control flow of a model into a
standard Java class or a Java servlet.

104 B. Steffen et al.

Fig. 8. The development process for the family of Code Generators

The Codegenerator is itself a direct application of the Lightweight Process
Coordination approach: it was not programmed by hand, but itself modelled as
a SLG within the jABC.

Already our first code generator, the generator for standard Java classes, was
completely modelled using the jABC. To assure the correctness of the design, the
LocalChecker and the ModelChecker were constantly used during the modelling
phase. The result is a SLG that, after parameterization, generates an executable
Java class from another SLG. We bootstrapped the generator by executing the
model with the Tracer: the execution produces an executable Java class of itself
- this way we obtained our first code generator as a standalone Java application.

This generator forms the basis for our family of code generators. The generator
for Java servlets was achieved by slight modifications to the SLG of the initial
Java class generator and subsequent code generation from this SLG via the
original Java class generator. The development process for these two is depicted
in Fig. 8.

Following this approach, we have a general and easy way of creating new code
generators. We envisage here generating J2ME MIDlets, C++ code or even one
single SIB from a whole SLG (implemented). By exploiting the advantages of the
LPC approach we can profit directly from the code generators already available,
achieving high reusability and increasing the efficiency of development.

8 Related Work

There are numerous powerful verification environments/tools that work at the
programming language level, like SLAM, Bandera or ESC/Java1, and others
that focus for example on protocol aspects like CADP2 or on the development of
1 See the websites at http://research.microsoft.com/slam/, http://bandera.projects.

cis.ksu.edu/, and http://secure.ucd.ie/products/opensource/ESCJava2/, respectively.
2 See the website at http://www.inrialpes.fr/vasy/cadp/

Model-Driven Development with the jABC 105

embedded systems like Autofocus3. The jABC with its LPC approach is different
from them in that it operates on a much higher level of abstraction. We will
therefore concentrate the following discussion on approaches which more closely
resemble this characteristic trait of the jABC.

Our way of aggressive model-driven development closely relates to the con-
cepts of generative software development, where ”a given system can be au-
tomatically generated from a specification written in one or more textual or
graphical domain-specific languagesst, as in [10]. Both concepts focus on achiev-
ing application-domain and technical flexibility. The notation for specifying a
system in our approach is given through the SIBs, which can be considered
a domain-specific language since they offer domain-specific functionalities both
as concepts in the taxonomy and as design primitives. Thanks to taxonomies
and high customizability, the user is free to resort to familiar terminology and
to graphical representations that fit the specific application domain. By defin-
ing rules for local checking and model checking domain-specific error-checking
can be performed, and the framework character of the jABC allows to add any
domain-specific tool support by providing new plugins. Technical variability is
gained among others through different code generators, which generate a running
and deployable system in such a way that it fits virtually any target platform.

Another approach very close to ours is presented in [4]. This approach proposes
the use of coordination contracts to promote the separation of the coordination
aspects that regulate the way objects interact in a system from the way objects
behave internally. As with us, their main concern is supporting evolutionary
aspects of the whole system. In their work, contracts fulfill a role similar to
architectural connectors: they make these coordination features available as first-
class citizens, so that it is possible to treat them distinctly from the functionality
of the components.

Contracts are based on superposition mechanisms [20] for supporting forms
of dynamic reconfiguration of systems. These mechanisms enable contracts to
be added or replaced without the need to change the objects to which they
apply. CDE, an environment for developing coordination contracts in Java, is
described in [13]. The CDE approach is still programming oriented: unlike our
coordination graphs, contracts must be programmed; they do not (yet) support
macros or hierarchy, and no automatic verification of contracts is available.

Subject-oriented design [9] is another approach comparable to LPC. The basic
idea behind it is the decomposition of standard design models into smaller units
called design subjects, which are very close to our SIBs. Just like SIBs, design
subjects encapsulate ”a single, coherent piece of functionality” [9] and may be
built so that they fit the structure of application-specific requirements. Thus
subject-oriented designs help to bridge the gap between requirements, which may
relate to certain features, and implementation code, which may utilize object-
oriented terminology. This is also achieved by our LPC approach, as it propagates
a notation and the corresponding tools and framework, which explicitly can be
adequately used by both non-programmers and programmers.

3 See the website (in German) at http://autofocus.in.tum.de/Infos/afinfo-de.html

106 B. Steffen et al.

While the aim of most of the approaches of the five categories named above
is very similar to our LPC, their realization is quite different. They work still
at much lower level of abstraction, and they typically do not support formal
methods-based verification mechanisms like model checking.

9 Conclusion

In this paper we have presented the jABC Framework, which incarnates the Light-
weight Process Coordination development method. We also introduced the core
plugins of the jABC (LocalChecker, the ModelChecker, the Tracer, and the Code-
generator). The set of available jABC plugins is constantly growing and covers a
broad range of topics (see [37], [28]). Besides enhancing the range of applicability,
these plugins focus on improved validation technology, like improved diagnosis for
model checking and run time verifcation based on our integrated test environment.

Several application domains have been successfully covered so far with the
jABC: complex supply chain management with IKEA [15], modelling and ex-
ecution of bioinformatics workflows [27], the Semantic Web Service challenge
[22], and dataflow analysis of Java programs [26], a management framework for
remote intelligent configuration of systems [5], and an application development
platform for Galileo services [14]. These projects were very different in nature,
nevertheless we observed a surprisingly high potential of synergy, which was due
to the jABC approach.

References

1. Eclipse Website. http://www.eclipse.org/.
2. jABC Website. http://www.jabc.de.
3. Rational Unified Process. http://www-306.ibm.com/software/awdtools/rup/ .
4. L. Andrade, J. Fiadeiro, J. Gouveia, G. Koutsoukos, A. Lopes, M. Wermelinger.

Coordination technologies for component-based systems. In Proc. Integrated Design
and Process Technology, 2002.

5. M. Bajohr, T. Margaria: MATRICS: A Management Tool for Remote Intelligent
Configuration of Systems, Innovations in System and Software Engineering - a
NASA Journal, Springer Verlag, July 2006.

6. M. Bakera and C. Renner. GEAR - A Model Checking Plugin for the jABC frame-
work. http://www.jabc.de/modelchecking/.

7. T. Berg, H. Raffelt, B. Steffen: LearnLib: A Library for Automata Learning and
Experimentation, Proc. FMICS’05 (ACM 10th Int. Worksh. on Formal Methods
for Industrial Critical Systems), Sept. 2005, Lissabon (P), ACM Press.

8. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2001.
9. S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Subject-oriented design: towards

improved alignment of requirements, design, and code. ACM SIGPLAN Notices,
34(10):325–339, 1999.

10. K. Czarnecki. Overview of generative software development. In UPP, pages 326–
341, 2004.

11. M. Dwyer, G. Avrunin, J. Corbett. Specification Patterns Website.
http://patterns.projects.cis.ksu.edu/.

http://www.eclipse.org/
http://www.jabc.de
http://www-306.ibm.com/software/awdtools/rup/
http://www.jabc.de/modelchecking/
http://patterns.projects.cis.ksu.edu/

Model-Driven Development with the jABC 107

12. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proc. ICSE’99, pp. 411–420, Los Alamitos, CA, 1999.
IEEE CS Press.

13. J. Gouveia, G. Koutsoukos, L. Andrade, J. L. Fiadeiro. Tool support for
coordination-based software evolution. Proc. TOOLS’01: Technology of Object-
Oriented Languages and Systems, p.184, Washington DC, 2001. IEEE CS Press.

14. M. Högl, T. Margaria, B. Steffen: The GalileoGate Solution Factory for Location-
Based Integrated Services, Proc. IDPT 2006, Int. Conf. on Integrated Design and
Process Technologies, San Diego, June 2006.

15. M. Hörmann, T. Margaria, T. Mender, R. Nagel, M. Schuster, B.Steffen, H.
Trinh: The jABC Appraoch to Collaborative Development of Embedded Applica-
tions, CCE’06, Int. Workshop on Challenges in Collaborative Engineering - State
of the Art and Future Challenges on collaborative Design, Prag (CZ), April 2006
(Industry day).

16. H. Hungar, T. Margaria, B. Steffen: Test-Based Model Generation for Legacy Sys-
tems, Proc. IEEE ITC’03, Charlotte, 2003, IEEE CS Press, pp.971–980.

17. S. Jörges. FormulaBuilder Website. http://www.jabc.de/formulabuilder/.
18. S. Jörges, T. Margaria, and B. Steffen. Formulabuilder: A tool for graph-based

modelling and generation of formulae. In Proc. ICSE’06 Shanghai, May 2006.
19. M. Karusseit, T. Margaria: Feature-based Modelling of a Complex, Online-Reconf-

igurable Decision Support Service, WWV’05, 1st Int. Worksh. Automated Specif.
and Verification of Web Sites, Valencia, March 2005, ENTCS N. 1132.

20. S. Katz. A superimposition control construct for distributed systems. ACM
TOPLAS., 15(2):337–356, 1993.

21. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983.

22. C. Kubczak, R. Nagel, T. Margaria, B. Steffen: The jABC Approach to Mediation
and Choreography, Semantic Web Services Challenge 2006, Phase I-III Workshops,
DERI, Stanford University, U. of Georgia, March-November 2006.

23. ITU: General recommendations on telephone switching and signaling - intelli-
gent network: Introduction to intelligent network capability set 1, Recommendation
Q.1211, Telecommunic. Standardization Sector of ITU, Geneva, Mar. 1993.

24. ITU-T: Recommendation Q.1203. ”Intelligent Network - Global Functional Plane
Architecture”, Oct. 1992.

25. ITU-T: Recommendation Q.1204. ”Distributed Functional Plane for Intelligent Net-
work Capability Set 2: Parts 1-4”, Sept. 1997.

26. A.L. Lamprecht, T. Margaria, B.Steffen: Data-Flow Analy-sis as Model Checking
within the jABC, Proc. CC’06, 15th Int. Conf. on Compiler Construction, Vienna
(A), March 2006, LNCS, 3923, Springer Verlag, pp. 101-104.

27. T. Margaria, C. Kubczak, M. Njoku, B. Steffen: Model-based Design of Distributed
Collaborative Bioinformatics Processes in the jABC, Proc. ICECCS 2006, Stanford
Univ., CA (USA), August 2006, IEEE CS Press.

28. T. Margaria, R. Nagel, B. Steffen: Remote Integration and Coordination of Verifi-
cation Tools in JETI, Proc. IEEE ECBS 2005, April 2005, Greenbelt (USA), IEEE
CS Press, pp. 431–436.

29. T. Margaria and B. Steffen. Lightweight coarse-grained coordination: a scalable
system-level approach. STTT, 5(2-3):107–123, 2004.

30. T. Margaria, B. Steffen, M. Reitenspieß: Service-Oriented Design: The Roots, IC-
SOC 2005: 3rd ACM SIGSOFT/SIGWEB Int. Conf. on Service-Oriented Comput-
ing, Amsterdam, Dec. 2005, LNCS 3826, pp. 450-464, Springer Verlag.

http://www.jabc.de/formulabuilder/

108 B. Steffen et al.

31. M. Müller-Olm and H. Yoo. Metagame: An animation tool for model-checking
games. In TACAS 04, LNCS 2988, pages 163–167. Springer-Verlag, 2004.

32. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems
in cesar. In Proceedings of the 5th Colloquium on International Symposium on
Programming, pages 337–351, London, UK, 1982. Springer-Verlag.

33. B. Steffen, B. Freitag, A. Claßen, T. Margaria, and U. Zukowski. Intelligent Soft-
ware Synthesis in the ”DaCapo” EnvironmentIn Proc. 6th /Nordic Workshop on
Programming Theory/, Aarhus (DK), October 1994, BRICS Report N. 94/6, De-
cember 1994.

34. B. Steffen, T. Margaria. METAFrame in Practice: Design of Intelligent Network
Services. In Correct System Design - Recent Insights and Advances, LNCS N. 1710,
State-of-the-Art Survey, pp. 390–415. Springer-Verlag, 1999.

35. C. Stirling and P. Stevens. Practical model-checking using games. Proc. TACAS
98, LNCS N.1384, pp. 85–101. Springer-Verlag, 1998.

36. W. Thomas. On the synthesis of strategies in infinite games. Proc.STACS’95,
LNCS N.900, pp.1-13. Springer-V., 1995.

37. C. Topnik, E. Wilhelm, T. Margaria, B. Steffen: jMosel: A Stand-Alone Tool and
jABC Plugin for M2L(Str), Proc. SPIN’06, 13th Int. Works. on Model Checking
of Software, Vienna, April 2006, LNCS 3925, Springer V., pp.293-298.

Detecting Design Flaws in UML State Charts for
Embedded Software

Janees Elamkulam1, Ziv Glazberg2, Ishai Rabinovitz3,�, Gururaja Kowlali1,
Satish Chandra Gupta1, Sandeep Kohli1, Sai Dattathrani1,

and Claudio Paniagua Macia4

1 IBM, Bangalore, India
{janees.ek, kgururaja, satish.gupta, sandeep.kohli,

saidatta}@in.ibm.com
2 IBM Research Lab, Haifa, Israel
glazberg@il.ibm.com

3 Mellanox Inc., Israel
ishair@gmail.com
4 IBM Barcelona, Spain

cpaniagua@es.ibm.com

Abstract. Embedded systems are used in various critical devices and correct
functioning of these devices is crucial. For non-trivial devices, exhaustive testing
is costly, time consuming and probably impossible. A complementary approach is
to perform static model checking to verify certain design correctness properties.
Though static model checking techniques are widely used for hardware circuit
verification, the goal of model checking software systems remains elusive. How-
ever embedded systems fall in the category of concurrent reactive systems and
can be expressed through communicating state machines. Behavior of concurrent
reactive systems is more similar to hardware than general software. So far, this
similarity has not been exploited sufficiently.

IBM R©1 Rational R© Rose R© RealTime (RoseRT) is widely used for designing
concurrent reactive systems and supports UML State Charts. IBM RuleBase is
an effective tool for hardware model checking. In this paper, we describe our ex-
periments of using RuleBase for static model checking RoseRT models. Our tool
automatically converts RoseRT models to the input for RuleBase, allows user
to specify constraints graphically using a variation of sequence diagrams, and
presents model checking results (counterexamples) as sequence diagrams con-
sisting of states and events in the original UML model. The model checking step
is seamlessly integrated with RoseRT. Prior knowledge of model checking or
formal methods is not expected, and familiarity of UML sequence diagram is
exploited to make temporal constraint specification and counterexample presen-
tation more accessible. This approach brings the benefits of model checking to
embedded system developers with little cost of learning.

� Ishai contributed to this research while his employment with IBM Research Lab, Haifa, Israel.
1 IBM, Rational, and Rational Rose are trademarks or registered trademarks of IBM Corporation

in the United States, other countries, or both.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 109–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

110 J. Elamkulam et al.

1 Introduction

Adherence of a system implementation to its requirement is demonstrated by running
a set of test cases. However, this can only prove presence of features and not absence
of defects. In case of concurrent systems, depending upon the sequence of events, there
is potential for problems such as race conditions, dead locks, and live locks. To verify
absence of these defects, an exhaustive set of test cases have to be designed, which is a
daunting task and prone to errors. But these defects can’t be tolerated in mission critical
systems for medical, automotive, and military industry.

Researchers have tried to solve this problem by applying Static Model Checking [14]
techniques. Tools such as SPIN [24], SMV [35] either require an abstract model of the
system in a propriety language, or try to extract an abstract model from source code.
Both these techniques have limitations. In case of former, specialized skills are needed
for defining an abstract model in a tool specific language, and there is a danger of
the model specifications becoming outdated as the system implementation evolves. In
case of latter, it is extremely hard for a tool to extract accurate and complete model
specification out of the source code. Incapability to construct accurate yet manageable-
size abstractions of the software and keeping it consistent with the implementations are
among the key hurdles in widespread adoption of software model checking.

IBM Rational Rose RealTime (RoseRT) [25] presents an unique opportunity to
bring model checking techniques to embedded system development. It is an advanced
UML [8] modeling tool for soft real time systems, and widely used in industry for de-
signing software for commercial embedded devices. The system behavior is specified
through a collection of communicating state machines (UML State Charts). RoseRT
generates the code from the model, but user can execute and debug at the model level –
that is, the model is the code – therefore there is no disparity between the model specifi-
cation and system implementation. Nor is the possibility of extracting incomplete model
specification from the implementation. The fact that a RoseRT model is complete and
correct representation of the underlying system provides the needed advantage, at least
in the embedded software domain, for overcoming above mentioned hurdles.

We observe that concurrent reactive systems are more similar to hardware than com-
mon software. Typically, in software systems, a relatively small set of variables change
in every cycle, but in hardware, all variables may change in every cycle. Similarly,
in communicating state machines for concurrent reactive systems, all machines may
change their states in every cycle. Due to this similarity, we believe that hardware model
checking techniques are more likely to succeed on these systems. Therefore for our ex-
periments, we use IBM RuleBase [2,4], a model checking tool for hardware circuits,
for model checking RoseRT models.

In the rest of this paper, we first provide an overview of our tool (Section 2), and
describe experimental results (Section 3). Later we discuss related research (Section 4)
and draw some conclusions (Section 5).

2 Connecting RoseRT and RuleBase

RoseRT models consist of state machines that communicate with each other by pass-
ing messages. These communicating state machines embody the concurrent reactive

Detecting Design Flaws in UML State Charts for Embedded Software 111

Fig. 1. Modeling checking RoseRT models using RuleBase

behavior of an embedded device. Typically, these devices must adhere to a set of con-
straints, e.g., no sequence of events should cause a deadlock (a deadlock occurs when
two or more state machines are stuck in their respective states waiting for a message
from each other). Any failure to follow these constraints is potentially a design flaw.
A mechanism must be provided to specify the constraints. We achieve that by provid-
ing a graphical interface in RoseRT for specifying design constraints, and by extending
RoseRT model definition to include these constraints.

Our tool transforms a RoseRT model (which now includes constraints) to Property
Specification Language (PSL) [26], a language understood by RuleBase. RuleBase per-
forms model checking and generates results indicating event sequences that violate the
design constraints. These results are automatically correlated to the states and events
in the original model, and transformed into sequence diagrams to expose the problems
and present them to the user. In this section, we explain each of these steps (Figure 1)
in details with the help of client-server protocol [9] example.

The client-server example has two state machines, one each for the client and the
server, and they are connected via a two-way FIFO communication channel (Figure 2).
The Client state machine has 3 states: Ready, Wait and Register. The Server state ma-
chine also has 3 states: Idle, Service and Fault. A state machine changes the state either
upon receiving a message or due to internal events (such as server completing a request
or detecting a fault). When an internal event occurs, a state machine may also send out
a message. The state transition is represented by an arc and the arcs are tagged with the
messages. Reception of a message is represented by plus sign (+m), and dispatch of a
message is represented by a minus sign (-m).

112 J. Elamkulam et al.

Server

Channel

Ready

RegisterWait

−Req

+Done

+Alarm

−Ack

Client

Service

+Req

−Done

Idle

Fault

+Ack

−Alarm

Fig. 2. Client and Server state machines

Initially, the client is in the Ready state and the server is in Idle state. The Client
can send a request (Req) to the Server, and enter to the Wait state. Upon receiving the
request, the Server goes to the Service state. When the request is completed, the Server
sends a Done message to the Client and goes back to the Idle state. When the Client
gets the Done message, it goes back to the Ready state.

While the server is Idle, it may detect a fault in itself. It sends an Alarm message
to the Client, and enters to the Fault state. When the Client gets the Alarm message, it
goes to the Register state to log the fault, and then it acknowledges the fault by send-
ing an Ack message to the Server and goes back to Ready state. Upon receiving the
acknowledgment, the Server goes to the Idle state. If any message other than the one
tagged on the arcs arrives, it is ignored and the state remains unchanged. It is a simple
example yet sufficient to explain various aspects of our tool. Experimental results with
more complex examples are discussed in Section 3.

2.1 Constraint Specification

While examining various alternatives to specify design constraints, an important con-
sideration is that it should be easy for users to adapt. Since users are familiar with
sequence diagrams, we created simple and intuitive sequence diagram extensions (sim-
ilar to Harel’s Live Sequence Diagrams [21]) for defining temporal constraints and to
accommodate the temporal layer of PSL. For the Client - Server example, an interesting
constraint to verify would be that there are no deadlocks, or in other words “eventually
Server state machine should come to Idle state, and Client state machine should come to
Ready state”. The screen dump in Figure 3 shows how a user can specify this constraint.

2.2 Transforming RoseRT Model

Our tool automatically transforms RoseRT models and constraints to PSL. Converting
constraints to PSL is trivial because of the one-to-one mapping between our extensions
for defining constraints and temporal layer of PSL. Converting RoseRT model requires
generating PSL code for state machines and the connection channels between them. A

Detecting Design Flaws in UML State Charts for Embedded Software 113

Fig. 3. Screen dump of constraints specification using Sequence Diagram extensions

state machine consists of a set of states, one of which is the initial state, and a set of
state transitions. PSL code for each state machine is generated as following:

– define a PSL variable that enumerates on all states,
– capture initial state by defining a PSL init construct,
– encode each state transition tuple 〈 source state, destination state, precondition,

action〉 using PSL next and case constructs.

Enumerating states and defining initial state is simple (see definitions of Server state
and init(Server state) in Figure 4). But encoding a state transition is non-trivial due
to two reasons: nondeterministic interleaving of simultaneous occurrence of multiple
preconditions, and potential effect of an action on the state of the channel. We will
explain both complexities using the Idle state in the Server state machine.

Examine Figure 2, from Idle state, two state transitions are possible. First transi-
tion is to handle requests: 〈Idle, Service, top() == Req, dequeue()〉, where top()
checks the type of first message in the channel’s message queue, and dequeue() re-
moves the first message of the queue. Second transition is to handle server alarms:
〈Idle, Fault, event(ServerAlarm), enqueue(Alarm)〉, where enqueue() inserts
a message in the channel’s message queue. If a request comes in the channel and an
error occurs at the same time, preconditions for both state transitions become true si-
multaneously. Which of the two should be considered first is nondeterministic. Both
interleavings must be examined by model checker, and the PSL encoding must reflect
that. Also, actions associated with both state transitions alter the message queue in the
communication channel, and this interdependence of state machine and channel behav-
iors complicates the encoding logic. Therefore decoupling of these two is desired.

114 J. Elamkulam et al.

The first problem of nondeterministic interleaving of simultaneous occurrence of
multiple preconditions is solved by creating an additional PSL variable for each state
machine. This additional variable is used to distinguish between event and message trig-
gers, and in defining preconditions for state transitions. For example, Server trigger
variable in Figure 4 is used by all preconditions (e.g. S ReqReceived, S SendDone)
in the Server state machine. Using this extra variable eliminates the possibility of multi-
ple preconditions being true at the same time. Nondeterministic behavior of the trigger
is specified using PSL’s assign construct, which instructs RuleBase to explore all pos-
sible interleavings by nondeterministically setting the extra variable to event or msg.
Next states of various state transitions are encoded in a PSL’s next construct with a
case construct for each precondition (see next(Server state) statement near the bot-
tom of Figure 4).

The second problem of interdependency between actions and channel’s message
queue behavior is solved by having an enqueue definition to hold the message that an
action inserts into the message queue. This definition is utilized in encoding the mes-
sage queue of the channel. This extra definition achieves the desired decoupling. An
example is the S2C enqueue definition near the bottom of Figure 4.

Note that the define statements in the model, such as those for C2S dequeue and
S2C enqueue can be omitted, and their usage can be replaced by full encoding of
the condition. But the define statements don’t increase the model size, and improve
readability.

The message queue of a channel follows FIFO semantics. FIFO is encoded using
following template (To handle boundary cases, FIFO definition includes two constants:
fifo(-1)!=0 and fifo(FIFO SIZE)=0).

%for i in 0..(FIFO_SIZE-1) do
assign init(fifo(i)) := 0;
assign next(fifo(i)) := case

dequeue & fifo(0)!=0 : case
enqueue(new) & fifo(i)!=0

& fifo(i+1)=0 : new;
else : fifo(i+1);

esac;
enqueue(new) & fifo(i)=0

& fifo(i-1)!=0 : new;
else : fifo(i);

esac;
%end

When a message is consumed from the FIFO, all other messages shift. The model for
this behavior is trivial: next(fifo(i)) := fifo(i+1). However this simplistic ap-
proach can not take care of all scenarios, and that is why our FIFO model template is
slightly more complex, and need explanation:

– When a message is consumed (dequeue) from a non-empty FIFO, and at the same
time a new message arrives (enqueue), then the last message entry is replaced by the
new message. This behavior is captured by conditionfifo(i)!=0&fifo(i+1)=0,
since the condition is true only for the last entry.

Detecting Design Flaws in UML State Charts for Embedded Software 115

#define FIFO_SIZE 2
vunit protocol {
-- First Pass: define all variables for all
-- state machines and channels

-- define state machines, enumerate states
var Server_state : {Idle, Service, Fault};
var Client_state : {Ready, Wait, Register};

-- define triggers for all state machines
var Server_trigger : {event, msg};
assign Server_trigger := {event, msg};
var Client_trigger : {event, msg};
assign Client_trigger := {event, msg};

-- define events for all state machines
var Server_event : {S_None, S_ReqFinished, S_ErrorDetetcted};
assign Server_event := {S_None, S_ReqFinished, S_ErrorDetetcted};
var Client_event : {C_None, C_NewReq, C_AlarmRegistered};
assign Client_event := {C_None, C_NewReq, C_AlarmRegistered};

-- define FIFO msg queues for all channels between, any two state machines
var MsgQ_S2C(0..(FIFO_SIZE-1)) : {S2C_Empty, S2C_Done, S2C_Alarm};
var MsgQ_C2S(0..(FIFO_SIZE-1)) : {C2S_Empty, C2S_Req, C2S_Ack};

-- Second Pass: For all state machines, encode init states and transitions.
-- Encode all communication channels.

-- define init states for Server SM
assign init(Server_state) := Idle;

-- define preconditions for Server SM
define S_ReqReceived := (Server_state = Idle & Server_trigger = msg

& MsgQ_C2S(0) = C2S_Req);
define S_SendDone := (Server_state = Servive & Server_trigger = event

& Server_event = S_ReqFinished);
define S_SendAlarm := (Server_state = Idle & Server_trigger = event

& Server_event = S_ErrorDetetcted);
define S_AckReceived := (Server_state = Fault & Server_trigger = msg

& MsgQ_C2S(0) = C2S_Ack);

-- define state transitions for Server SM
assign next(Server_state) := case

S_ReqReceived : Service;
S_SendDone : Idle;
S_SendAlarm : Fault;
S_AckReceived : Idle;
else : Server_state;

esac;

-- define enqueue actions for Server SM
define S2C_enqueue := case

S_SendDone : S2C_Done;
S_SendAlarm : S2C_Alarm;
else : S2C_Empty;

esac;

-- define dequeue actions for server
define C2S_dequeue := case

S_ReqReceived : 1;
S_AckReceived : 1;
else : 0;

esac;

-- skipped: client state machine, S2C and C2S channels
}

Fig. 4. Generated PSL for Client and Server State Machines

116 J. Elamkulam et al.

– When a message is dequeued, all messages shift (except for the last entry if there
is also an enqueue, this is the former case). This is the trivial case.

– When there is only enqueue, the new message should be stored at the first empty
FIFO entry. This is captured by condition fifo(i)=0&fifo(i-1)!=0, since it is
true only for the first empty entry.

– When there is no dequeue, all messages should keep their value (except the first
empty entry when there is an enqueue , which is handled be previous case).

The occurrences of enqueue and dequeue in the template are replaced by appropriate
enqueue definitions and preconditions. We also have a model for priority queue but we
are omitting it in this paper for sake of simplicity.

The transformation of RoseRT model to PSL is done in two passes. In the first pass,
all variables are generated. In second pass, remaining definitions are generated.

2.3 Executing RuleBase and Transforming Counterexample

The PSL for the state machine model and constraints is fed to RuleBase. RuleBase
performs model checking. If any constraint is found to be violated, it reports a counter
example exposing the offending event sequence. Our tool maps the counterexamples to
the states and events in the original model and presents it as a UML sequence diagram,
making it easy for user to understand the design flaw.

Model checking of the client-server state machines example discovered a deadlock,
the counterexample is shown in Figure 5. A deadlock is caused when the Client sends
a Req message to the Server, goes to the Wait state and waits for the Server to com-
plete the request and send it back a Done message. Meanwhile, the Server detects an
error before getting Client’s Req message. It sends an Alarm message to the Client and
waits for the Client to send it back an Ack message. Now both Client and Server state
machines are waiting for a message from each other.

3 Experimental Results

We performed model checking on some of the benchmarks [22]: Client Server protocol,
ATM machine, ATM machine with an error, and Railway Crossing. The results are
shown in Table 1. We checked for liveliness property for each test case:

– Client Server: Eventually, Client and State will return to Ready and Idle states
respectively.

– ATM: Eventually ATM will return to Idle state. We also introduced an error in
the ATM UML models by removing a message that needed to be passed. Model
checking found a counter example where due to that error, ATM will never return
to Idle state.

– General Railroad Crossing (GRC): We checked two liveliness properties. The first
set of data are for checking that when a train is crossing a track, the gates should
be closed. The second set of data are for checking eventually a train will pass and
not get blocked.

For each test case, Table 1 shows: the size of the BDD in the last model checking iter-
ation, the size of state space, total BDD nodes allocated while model checking (includes

Detecting Design Flaws in UML State Charts for Embedded Software 117

Fig. 5. Screen dump of model checking results, IBM RuleBase has discovered a deadlock in the
Client Server state machines

Table 1. Model checking results on benchmarks

UML Model Complexity Model Checking Complexity
Benchmark State States Trans- Trigg- BDD State Nodes Memory User

m/c’s itions ers Size Space Allocated (MB) Time(s)

Client Server 2 6 8 4 67 53056 5657 38 0.85
ATM Machine 2 10 15 9 27 800 2778 38 0.54
ATM Error 2 10 15 9 28 672 4752 38 0.77
Railroad 1 4 24 31 11 673 9.47*1010 727518 52 13.21
Railroad 2 4 24 31 11 673 9.47*1010 727153 52 24.89

118 J. Elamkulam et al.

all iterations), memory consumed and time taken while model checking. All of these
are indicative of the complexity of model and the design constraint being examined.

Model checking for all test cases took less than half a minute. We were surprised that
model checking our Client Server model is harder than ATM model, though it is smaller
than ATM model. The reason is that there are more number of possible interleaving of
events and messages in Client Server state machines. The General Railroad Crossing
is a more complex example which has been used as benchmark in some of the related
research discussed in the next section.

4 Related Research

There have been several attempts of model checking state charts. Not surprisingly, all of
them follow the same basic idea: translate state charts to the input language for a model
checker, specify constraints, run the model checker, and analyze the results. Though
the level of sophistication of each step varies significantly. Some of these approaches
require translation to be done manually, and some have automated it. Some allow con-
straints to be specified graphically, some require the constraints to be written in the
model checker input language (which requires understanding of the language as well
as the conversion internals, even if it is automated). Some expects users to analyze the
counterexample produced by model checker, and map this symbolic result to the state
charts and events (which is not easy), while some does this mapping automatically. We
describe here the most relevant literature.

Chan’s [11] work was one of the first to use SMV [35] for model checking a variant of
Harel’s state charts [19]. The state charts were manually translated to SMV, and model
checking was done for robustness and safety-critical properties. This work lies at one
end of spectrum where both input to SMV and the constraints to be validated were hand
crafted. TABU [3], at the other end of spectrum, had an automatic conversion of UML
state charts to SMV and had a wizard to help writing Linear Temporal Logic properties.
It showed the counterexample in a tabular form.

Just like SMV, VIS [10] is also a symbolic model checker that uses Binary Decision
Diagrams (BDDs). The STATEMATE Verification Environment [7] used VIS for model
checking STATEMATE [20] charts. Alur [1] used BDD package from VIS for model
checking hierarchical state machines. Shen [41] used Abstract State Machine (ASM)
model checker, which is based on SMV, for model checking UML state charts and
OCL constraints, and presented counterexample in a tabular form.

SPIN [24] is another favorite model checker. Mikk’s [36] tool automatically trans-
lated STATEMATE models to Promela, the input language for SPIN. Results were
mapped back to original specifications and presented in non-graphical form. Latella [32]
used SPIN but targeted UML state charts. The translation was automatic but handled
only one state machine (authors claimed that it can be easily extended to handle mul-
tiple state machines). vUML [34] automated the translation of UML state charts to
Promela and performed deadlock detection. HUGO [29] automatically translated UML
state chart and fed it to SPIN and UPPAAL [31] model checkers. Constraints had to
be specified in Promela. A textual counterexample trace was generated with the help of
printf statements embedded in the Promela code. Darvas [15] also used SPIN on UML

Detecting Design Flaws in UML State Charts for Embedded Software 119

models. The counterexample was presented as message sequence chart, but not mapped
back to original model.

Apart from SMV and SPIN, there are attempts to use other model checker such as
converting STATEMATE charts to Esterel [40], UML state charts to Jack [18], and an
Eclipse plug-in [6] using BLAST model checker [23].

There is also a body of work on formal semantics for state charts [30,33,39] and
temporal constraints [17]. And there have been efforts for making temporal logic [5]
specification more accessible by providing graphical interfaces [21,27,28,37].

We believe that for model checking to become popular, a tool must have follow-
ing characteristics: automatic translation of state charts to input language for model
checker, graphical and way of defining constraints, translation of counterexample back
to the original model, and displaying it using common notations such as UML sequence
diagrams. Essentially model checking should be invisible to the user and should be
available at a click of a button. Currently available tools described in this section does
not have all of these characteristics.

5 Conclusions and Future Work

The work presented here exploits the similarities of hardware circuits and embedded
systems by seamlessly integrating IBM RuleBase to IBM Rational RoseRT. We support
graphical way of specifying constraints and automatic translation of UML state charts
and constraints to RuleBase input without requiring user intervention, and display coun-
terexamples as sequence diagrams using states and events in the original UML model.
This approach reduces the needed learning time, and brings down the complexity below
the threshold for widespread adoption of model checking.

Our sequence diagram modifications for constraint definition is similar to Harel’s
Live Sequence Diagram (LSC) [21]. An alternative approach is to use OCL [38] as done
by Flake [16]. A suitable mix of both needs to be explored that combines mathematical
rigor of OCL with the intuitiveness of LSC. Another dimension of future work is to per-
form model checking at various levels of state machine hierarchy instead of attempting
to flatten the state charts without state space explosion [42]. The abstraction at a given
level of the hierarchy might lead to false positive due to some combination of events
that are not possible if the details from the lower levels of the hierarchy are considered.
Therefore, when model checking results into a spurious counterexample, the abstrac-
tion should be refined. Only the compound states relevant to the counterexample can be
flattened and model checking can be performed again. We plan to explore this approach
with an expectation that it will lead to further improvements. We also plan to explore
the possible ways of handling models that have C/C++ code embedded as actions.

References

1. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM Transactions
on Programming Languages and Systems 23(3) (2001) 273–303

2. Barner, S., Glazberg, Z., Rabinovitz, I.: Wolf - bug hunter for concurrent software using
formal methods. In: Proc. of 17th International Conference on Computer Aided Verification,
Lecture Notes in Computer Science. Volume 3576., Springer (2005) 153–157

120 J. Elamkulam et al.

3. Beato, M.E., Barrio-Solórzano, M., Quintero, C.E.C., de la Fuente, P.: UML automatic veri-
fication tool with formal methods. Electronic Notes in Theoretical Computer Science 127(4)
(2005) 3–16

4. Beer, I., Ben-David, S., Eisner, C., Landver, A.: RuleBase: an industry-oriented formal veri-
fication tool. In: Proc. of the 33rd Design Automation Conference. (1996) 655–660

5. Bellini, P., Mattonlini, R., Nesi, P.: Temporal logics for real-time system specification. ACM
Computing Surveys 32(1) (2000) 12–42

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: An Eclipse plug-in for model checking.
In: Proc. of 12th International Workshop on Program Comprehension (IWPC2004), IEEE
Computer Society (2004) 251–255

7. Bienmüller, T., Damm, W., Wittke, H.: The STATEMATE verification environment – making
it real. In: Proc. of 12th International Conference on Computer Aided Verification, Lecture
Notes in Computer Science. Volume 1855., Springer (2000) 561–567

8. Booch, G., Rumbaugh, J.E., Jacobson, I.: Unified Modeling Language User Guide. Addison-
Wesley (1999)

9. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the Associa-
tion for Computing Machinery 30(2) (1983) 323–342

10. Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A.L., Somenzi, F., Aziz, A., Cheng,
S.T., Edwards, S.A., Khatri, S.P., Kukimoto, Y., Pardo, A., Qadeer, S., Ranjan, R.K., Sarwary,
S., Shiple, T.R., Swamy, G., Villa, T.: VIS: a system for verification and synthesis. In: Proc.
of 8th International Conference on Computer Aided Verification, Lecture Notes in Computer
Science. Volume 1102., Springer (1996) 428–432

11. Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J.D.: Model
checking large software specifications. IEEE Transactions on Software Engineering 24(7)
(1998) 498–520

12. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. on Programming Languages and
Systems 8(2) (1986) 244–263

13. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. on
Programming Languages and Systems 16(5) (1994) 1512–1542

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)
15. Darvas, A., Majzik, I., Benyo, B.: Verification of UML statechart models of embedded

systems. In: Proc. of 5th IEEE Design and Diagnostics of Electronic Circuits and Systems
Workshop. (2002) 70–77

16. Flake, S., Müller, W.: A UML profile for real-time constraints with the OCL. In: Proc. of
The Unified Modeling Language (UML2002), Lecture Notes in Computer Science. Volume
2460., Springer (2002) 179–195

17. Flake, S., Müller, W.: Formal semantics of static and temporal state-oriented OCL con-
straints. Software and System Modeling 2(3) (2003) 164–186

18. Gnesi, S., Latella, D., Massink, M.: Model checking UML statechart diagrams using JACK.
In: Proc. of 4th IEEE International Symposium on High-Assurance Systems Engineering.
(1999) 46–55

19. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer
Programming 8(3) (1987) 231–274

20. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Transactions on
Software Engineering and Methodology 5(4) (1996) 293–333

21. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer (2003)

22. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: A benchmark for comparing different ap-
proaches for specifying and verifying real-time systems. In: Proc. of the 10th IEEE workshop
on Real-time operating systems and software. (1993) 122–129

Detecting Design Flaws in UML State Charts for Embedded Software 121

23. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with BLAST. In:
Proc. of 10th SPIN Workshop on Model Checking Software (SPIN2003), Lecture Notes in
Computer Science. Volume 2648., Springer (2003) 235–239

24. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley
(2003)

25. IBM: RationalRoseRealTime. (http://www.ibm.com/software/awdtools/developer/technical)
26. IEEE: PSL – IEEE Standard for Property Specification Language, IEEE P1850. (http://

www.eda.org/ieee-1850/)
27. Jahanian, F., Mok, A.K.: Modechart: A specification language for real-time systems. IEEE

Transactions on Software Engineering 20(12) (1994) 933–947
28. Kent, S.: Constraint diagrams: visualizing invariants in object-oriented models. In: Proc. of

the 12th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications (OOPSLA97), ACM Press (1997) 327–341

29. Knapp, A., Merz, S., Rauh, C.: Model checking – timed UML state machines and collabo-
rations. In: Proc. of 7th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, Lecture Notes in Computer Science. Volume 2469., Springer (2002)
395–416

30. Kwon, G.: Rewrite rules and operational semantics for model checking UML statecharts. In:
Proc. of The Unified Modeling Language (UML2000), Lecture Notes in Computer Science.
Volume 1939., Springer (2000) 528–540

31. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on Software
Tools for Technology Transfer 1(1-2) (1997) 134–152

32. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset of UML
statechart diagrams using the SPIN model-checker. Formal Aspects of Computer Science
11(6) (1999) 637–664

33. Latella, D., Majzik, I., Massink, M.: Towards a formal operational semantics of UML stat-
echart diagrams. In: Proc. of 2rd International Conference on Formal Methods for Open
Object-Based Distributed Systems. Volume 139., Kluwer (1999)

34. Lilius, J., Paltor, I.: vUML: a tool for verifying UML models. In: Proc. of 14th IEEE
International Conference on Automated Software Engineering. (1999) 255–258

35. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
36. Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementing statecharts in

PROMELA/SPIN. In: Proc. of 2nd Workshop on Industrial-Strength Formal Specification
Techniques, IEEE Computer Society (1998) 90–101

37. Moser, L.E., Ramakrishna, Y.S., Kutty, G., Melliar-Smith, P.M., Dillon, L.K.: A graphical
environment for the design of concurrent real-time systems. ACM Transactions on Software
Engineering and Methodology 6(1) (1997) 31–79

38. Object Management Group: UML 2.0 OCL Final Adopted Specification. OMG Document
ptc/03-10-14, ftp://ftp.omg.org/pub/docs/ptc/03-10-14.pdf (2003)

39. Paltor, I., Lilius, J.: Formalising UML state machines for model checking. In: Proc. of
The Unified Modeling Language (UML1999), Lecture Notes in Computer Science. Volume
1723., Springer (1999) 430–445

40. Seshia, S.A., Shyamasundar, R.K., Bhattacharjee, A.K., Dhodapkar, S.D.: A translation of
statecharts to Esterel. In: Proc. of World Congress on Formal Methods, Lecture Notes in
Computer Science. Volume 1709., Springer (1999) 983–1007

41. Shen, W., Compton, K.J., Huggins, J.: A toolset for supporting UML static and dynamic
model checking. In: Proc. of 16th IEEE International Conference on Automated Software
Engineering. (2001) 315–318

42. Wasowski, A.: Flattening statecharts without explosions. In: Proc. of the 2004 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools for embedded systems.
(2004) 257–266

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 122–123, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Panel:
Unpaved Road Between Hardware Verification

and Software Testing Techniques

Shmuel Ur

IBM Haifa Labs
ur@il.ibm.com

The Haifa verification conference was created to foster assimilation of knowledge and
tools between software testing and hardware verification. On the second day of the
conference, the tool day, we held a panel discussion on achieving this goal. The panel
was moderated by Shmuel Ur, the chair of the first Haifa Verification Conference,
who works in the industry and publishes both in software testing and in hardware
verification. These were the distinguished panelists:

• Randy Bryant - the dean of the Carnegie Mellon University School of Computer
Science and a university professor. Bryant's research focuses on methods for
formally verifying digital hardware, and more recently some forms of software.
His 1986 paper on symbolic Boolean manipulation using Ordered Binary Decision
Diagrams (BDDs) has the highest citation count of any publication in the Citeseer
database of computer science literature.

• Andrew Piziali - an industry veteran design verification engineer with 23 years of
experience in verifying mainframes, supercomputers, and microprocessors with
StorageTek, Amdahl, Evans and Sutherland, Convex Computer, Cyrix, Texas
Instruments, Transmeta, Verisity, and Cadence. He is the author of "Functional
Verification Coverage Measurement and Analysis" and the co-author of "ESL
Design and Verification" together with Grant Martin and Brian Bailey, which will
be available in the spring of 2007.

• Gul Agha - a professor of Computer Science and a research professor in
Coordinated Science Laboratory at the University of Illinois at Urbana-Champaign.
His work on Actors provided an influential model for concurrent computing. Dr.
Agha is a Fellow of the IEEE, a Golden Core of the IEEE Computer Society and a
former ACM international lecturer. He serves as the editor-in-chief of the ACM
Computing Surveys and is the past editor-in-chief of IEEE Concurrency: Parallel,
Distributed, and Mobile Computing.

• Avi Ziv - a member of the Simulation-based Verification Technologies department
at the IBM Haifa Research Lab. Since joining IBM in 1996, Avi has been involved
in many activities related to simulation-based verification, specifically in the area
of functional coverage. Currently, he leads projects in functional verification and
coverage-directed generation.

Often, hardware design verification and software testing seem to be separate
disciplines. Usually, different people work on them in separate companies and
conferences. Yet, significant similarities between software development and hardware

 A Panel 123

design exist, and the successful adoption of techniques originally developed for one
field for use in the other suggests that these disciplines are related. The panel's goal
was to analyze the similarities and differences between hardware verification and
software testing and to identify technologies that mature in one field and are ready to
cross over. Negative experiences of what did not or will not work are also important
as the bent is practical and it is important to know where difficulties lie.

One prominent crossover example is code coverage, which was first developed for
software testing and is now commonly used in hardware verification. Another
example is the FSM-based test generator, which was developed for the verification of
hardware modules and is now successfully employed for software testing. Moreover,
some techniques, such as reliability estimation, were developed for hardware,
changed and adapted for software, and are now starting to show their usefulness with
hardware again.

The panel was very interesting and was followed by lively interaction between the
panelists and the audience. Some of the interesting observations included these:

• It is very hard to find people in the software industry who are aware of hardware
verification. Indeed, the first question asked, was "Why is it called hardware
verification and not hardware testing?" We explained that hardware testing is
reserved on the hardware side for testing the hardware itself, where verification is
used for the logic. Hardware verification people, on the other hand, are generally
familiar with software testing techniques, as after all, they do write software.

• Economics plays an important role in deciding which technique to use. In general,
the cost of bugs in hardware is much higher as the product has to be replaced.
Therefore, in hardware testing, we try to obtain levels of quality that are unheard of
in commercial software. However, the levels of quality demanded of software are
rising and people are starting to use techniques such as formal verification, whose
advantages are in discovering extreme corner cases.

• The people working in software verification are usually less skilled, and software
testing for most people is not a career path. If you are good, you move to
development, which means that the tools used in software testing need to be very
simple. On the other hand, due to economics, hardware verification has more
prestige and people who choose it as a career, so the tools can be more complex.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 124–137, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Open Source Simulation Model
of Software Development and Testing

Shmuel Ur1, Elad Yom-Tov1, and Paul Wernick2

1 IBM Haifa Research Labs, Haifa, 31905, Israel
{ur, yomtov}@il.ibm.com

2 School of Computer Science, University of Hertfordshire,
College Lane, Hatfield, Herts. AL10 9AB, UK

p.d.wernick@herts.ac.uk

Abstract. This paper describes a new discrete event simulation model built
using a mathematical tool (Matlab) to investigate the simulation of the
programming and the testing phases of a software development project. In order
to show how the model can be used and to provide some preliminary concrete
results, we give three examples of how this model can be utilized to examine
the effect of adopting different strategies for coding and testing a new software
system. Specifically, we provide results of simulation runs intended to simulate
the effects on the coding and testing phases of different testing strategies, the
adoption of pair programming in an otherwise-unchanged process, and the
automation of testing. The model source code is available for downloading at
http://qp.research.ibm.com/concurrency_testing, and we invite researchers and
practitioners to use and modify the model.

Keywords: Simulation, Software Development, Iterative design, Algorithms,
Management, Measurement, Performance, Design, Economics, Reliability,
Experimentation, Theory, Verification.

1 Introduction

In many areas of software development, it is difficult to predict the effect of process
changes. This is due in large measure to the impact of the scale of real-world
development work. Mechanisms that work well in laboratory-sized experiments may
or may not scale up to work in industrial-scale developments of large systems.

An example of a mechanism that needs to work well in large-scale development is
testing. Current approaches include testing each module as it is completed by the
programmers, usually by a separate quality assurance team, formalized testing during
programming by the programmers, and the test-first strategy espoused most notably
by Beck in eXtreme Programming [1] of writing test harnesses code first and then
writing programs specifically to pass those tests. Another approach to managing the
resource applied to testing is to automate some or all of the tests, rather than having
people run them. Whilst this demands a greater initial investment, subsequent runs are
cheaper to perform. The question therefore arises as to when (if ever) the benefits of
such an approach outweigh the costs.

 An Open Source Simulation Model of Software Development and Testing 125

One mechanism for investigating questions such as these is software process
simulation. Here, an enactable, usually quantified, model is built of a process for
software development. This model is then modified to reflect actual and/or proposed
process changes, and the results compared with the initial case to determine whether
the change seems to improve or degrade performance. We believe that simulation is
the most effective way to investigate proposed process changes in large-scale
developments; in view of the uncertainty of scaling up small-scale experiments, the
only alternative is to conduct development cycles in parallel using each mechanism
and compare the results, an approach which is not only costly but also risks
introducing confounding factors such as users applying learning from one team to the
work of the other. However, the results derived from simulation runs do not carry the
same level of certainty as experiments under controlled conditions, in particular
because the simulation model is inevitably a simplification of the actual process.

A considerable body of literature describing the simulation of software processes
has grown up over time, including a number of journal special issues (see for example
[13, 17]). This has included work on software testing and quality assurance such as
that of Madachy [9].

To investigate inter alia the effects on a software process of different approaches to
testing, we have built a new discrete event simulation model using a mathematical tool
(Matlab) and used the model to investigate the effect of adopting different strategies
for coding and testing new software systems. This paper describes the simulation
model itself. Our work also examines the effects of different testing strategies and pair
programming on the completion times of the coding and testing phases. The Matlab
code of our simulation model is available at http://qp.research.ibm.com/
concurrency_testing. We invite researchers to use and comment on the model,
and to publish any improvements they make.

The work presented here shows how simulation-based studies can examine
software process behavior in cases where experiments or real-world testing are either
difficult or expensive to perform or produce results that cannot be easily generalized.
This is especially noted in software activities relating to large systems and/or over
many releases of a software product.

One characteristic of much of the published work in software process simulation is
that the results of simulation exercises and a description of the model are usually
presented but the model is typically not described completely, most often in respect of
the omission of the underlying equations or the input data used for the runs presented.
This may well be due to the size of the equations and/or data, but it does produce
results that are difficult for other workers to check, and in models which researchers
find difficulty in critiquing and improving. We have therefore decided to make the
code of our model public and easily accessible, not only in the hope that the software
testing community will make use of it in process optimization but also to allow other
workers to critique it, and, we hope, to modify and improve it.

We regard the simulation model itself as the main contribution of this work. It is
explicitly intended as a general-purpose simulation of the coding and testing phases of
a software process which can be modified to reflect any required process changes; in
this, it is closer in spirit to that of Wernick and Hall [17] than other software process
models which have generally been developed to represent a single process
environment or a specific process change. We also believe that its usefulness to

126 S. Ur, E. Yom-Tov, and P. Wernick

software engineers is enhanced by it having been written in an environment that is
closer to the programming languages with which software developers will be familiar
than the specific simulation environments used for other models. The specific results
we have obtained so far are of interest, but further validation work is required.

2 The Simulation Model

2.1 Outline of the Model

In this section, we explain our simulation model for the programming phase of a
project. We assume the design has been completed and we are simulating iterative
cycles for the construction of the program; these cycles continue until the constructed
program implements the design.

Write Test

Write code

Run Test

Check
Size

(b) Code building
cycle: Test First

Done

Debug

Test /inspect

Debug

Check
Quality

(c) System test

Done

Write code

Test / Inspect

Debug

Check
Size

(a) Code building cycle :
iterative

Done

Fig. 1. Simulation model structure

We have designed the simulation model to reflect three phases of code production:
code writing, testing, and debugging. First, the programmers develop the project
during the code writing phase. Once this has been done, they move onto the
test/inspect phase (unit, function or system after all the code is created) where they
test and/or inspect the new, and possibly the existing, code. Next, they proceed to the
debug/fix phase where they debug and repair all the bugs found during the test/inspect
phase. In traditional development methods this cycle repeats until the functionality of
the program is complete, as shown in Fig. 1(a). In newer agile methods, the cycle
repeats itself many times because each iteration is very short. Once the program is
complete, the system test cycles through the test/inspect and debug/fix phases until
some pre-defined quality criterion is reached, as shown in Figure 1(c). Generally, this

 An Open Source Simulation Model of Software Development and Testing 127

criterion is determined pragmatically and typically reflects less than 100% freedom
from bugs. The time dedicated to the code writing and testing phases is
predetermined. The time dedicated to debugging depends on the number of bugs
found and how long it takes to fix each one.

The Test First approach, depicted in Figure 1(b), results in a slightly different
simulation. Here the tests are created first, next the code is developed, and then the
tests are executed and the code is debugged. This approach is usually characterized by
very short code writing cycles.

The simulation begins with the code writing phase, where objects corresponding to
lines of code are actually created. These lines of code may or may not contain bugs;
this is determined by a probability parameter. In the test/inspect phase, specific lines
are tested/inspected and flaws may be found. In the debug/fix phase, time is spent
identifying the bugs related to the flaws and some lines are replaced with new lines,
which may, of course, contain new bugs. During the simulation, the program is created
and improves hour by hour. In each simulated hour, one of the above activities is
carried out, whether adding lines to the program, looking for bugs, or debugging and
fixing the code. Each line of code is actually added as a discrete item to the simulation
data so that when a specific location in the program is inspected for bugs, only the bugs
that were inserted during the code writing phase are found. (We have not simulated the
case of an incorrect review in which correct code is marked as a bug and changed.) In
addition to explaining the above phases, this section covers the implementation of a
bug to provide a more complete understanding of the simulation model.

In the real world and in our model, the more complex the program, the more
difficult it is to write, test, inspect, debug, and fix. In our simulation, for the sake of
simplicity, we use the size of the code measured in lines of code as a proxy for code
complexity and do not take into account the type of code (scientific, GUI, etc.). Type
of code would impact on the number of bugs per line, the number of lines written per
hour and possibly other parameters. Sometimes code complexity is not the only issue.
For example, the time passing between the introduction of the bug and its being found
is a major predictor of debug time [15].

Every programming hour, the model adds #code_line_per_hour lines to the code
base. This is not held as a count of lines; rather, an actual line object is created for
every new program line. The number of lines of written code may be impacted by the
complexity of the code (down), by the type of code (down or up), and by the
programming language. For example, it is possible that GUI code is written at a much
faster rate than control code. For each line created, the probability that it contains a
bug is the variable bugs_per_line. The duration of the code writing phase, which
determines the number of lines that are written, is a parameter of the simulation run
and is not part of the phase definition.

The test/inspect phase is composed of two distinct sub-phases: test writing and test
execution. During test writing a number of tests are created. This number is equal to
the length of the phase divided by time_to_create_test, corrected for complexity.
During the test execution sub-phase, the new tests are executed in order of creation,
along with as many old tests as possible. The simulation does not try to optimize the
execution of specific new and old tests if there is not enough time, an important field
of study in software testing [14]. However, such a module could be added to the
simulation and its impact studied. Each test created has a number of parameters, some
of which are used to find the lines of code actually tested by these tests. During

128 S. Ur, E. Yom-Tov, and P. Wernick

simulation, for each test there is a percentage of new lines and of old lines covered by
it. Another option that is that the test will execute a specific number of tested lines. Of
the possible program lines to be tested, some are chosen at random, based on the
parameters of the specific simulation run. Another parameter is the execution time per
test. Manual tests tend to have shorter creation times and longer execution time, while
automated tests have a longer creation time and shorter execution time.

The inspection sub-phase is very simple. The amount of code inspected is
governed by the #lines_reviewed_per_hour parameter, modified to reflect code
complexity. The number of lines reviewed is determined by the length of the phase.

During the debug/fix phase, any flaw found in the test phase is traced to its cause
and a bug is found. The debug time is influenced primarily by the duration between
the time the bug was put in and the time it was found, corrected for complexity. This
is one of the better documented phenomena and is a major reason for the Test First
approach [15]. If the bug was found during the review, debug is not necessary
because inspection finds root causes.

In the fixing sub-phase a number of lines are modified to correct the bug. The
number of lines modified may be influenced by the amount of time the bug was
hiding in the code before its discovery. However, because we do not have hard
evidence for this value, we have not included it in the simulation. The lines changed
are in the vicinity of the bugs and are treated as new code that does not increase the
program size. The time it takes to create this new code is hours_to_fix_bug.

The time taken to insert, detect, and fix bugs is the heart of the simulation. Each
bug is located in a specific line. For simplicity, we ignore multi-line bugs, which are
more adept at evading inspection. Each bug has a probability of being discovered by a
test, as indicated by prob_discovered_by_test, and a probability of being discovered by
inspection, as indicated by prob_discovered_by_inspection. A bug has a second
probability of being discovered by a test when the same test is re-executed. If it is a
deterministic bug, this probability is zero or close to it (ignoring random tests). If it is
a probabilistic bug (e.g. deadlock), the probability may be higher because the same
input (test) might expose the bug, depending on interleaving that is usually beyond
the tester’s control. This means that if regression testing is undertaken in deterministic
code, it rarely finds old bugs (if they become exposed to the test due to code change),
and mostly finds bugs introduced by modifications or bug fixes.

2.2 Model Default Values

A common use of a simulation model is to vary one or more parameter values and
observe the impact of these changes. To provide a reliable base case from which to
construct the investigations, it is first necessary to have well-supported default values
for all parameters. These values are based on experimental documentation.

The values we have used for model parameters are as follows:

• #code_line_per_hour = 30 [2:207–237]
• Bugs_per_line = 0.01 [7]
• correction_for_time_since_placement = 1 + (time_since_ bug)/2000 – The increase in

cost to fix bug due to code written between creation and fixing [3]
• Hours_to_fix_bug – base 2, multiply by 2 if a month passed, multiply by 3 if two

months passed [15:6–10]

 An Open Source Simulation Model of Software Development and Testing 129

• Bugs per lines of code after testing - no default as it is a simulation decision
• Prob_discovered_by_inspection = 0.5 : Laitenberger and DeBaud [8] suggest that

70% is achievable; we pessimistically set our rate to 50%.
• #lines_reviewed_per_hour = 200 : from [8]; in our experience, these time frames

differ greatly, but one hour for 200 lines is reasonable.
• Cost of testing = 1.14 hour per one hundred lines to do unit testing. [2: 146]
• Probability of finding bugs in test = .5 [15: 6–10]

2.3 Sensitivity Analysis

We have conducted a sensitivity analysis to determine the effect on the base case
model of modifying each of the input parameters. This analysis showed that all the
parameters cause the expected model output behaviour changes when their values are
modified. Our initial expectations that the completion time for the program would
increase with increasing the time to fix a bug, with increasing numbers of bugs per
line and with greater time required to write tests, were confirmed in simulation runs.
We expected the behaviour to be different with the number of lines written per
hour. If one writes very few lines per hour then the project time increases as
programming takes more time. If one writes many lines, more than can be tested,
many of the bugs will be discovered too late and the debugging cost will
increase. We expected a ‘sweet spot’, an optimal value, for the number of lines
written per hour, which for our simulation was found around 15 lines per hour as can
be seen in Figure 2. The important factor is not the number of lines per hour but

Fig. 2. Total project time as a function of lines programmed per hour

130 S. Ur, E. Yom-Tov, and P. Wernick

testing keeping pace with coding. If coding becomes more efficient then the testing
phase has to become longer to deal with the extra amount of code generated.

3 Sample Simulations

In this section, we describe three scenarios to illustrate the way in which the
simulation model can be employed to examine specific issues in software processes.

3.1 Comparing Waterfall, Iterative, and Test First Approaches

In the first simulation, we used the model to determine the optimal length of the
coding phase between testing cycles. Many development paradigms are distinguished
by this criterion. As our simulation runs the program is built in stages, each
comprising a program/test/debug cycle, until the entire program is complete. The
system test is then performed until the desired quality is reached. There are 120K
lines of code and a desired final bug count of approximately 50. The total bug count is
1200 bugs for all methods, based on a probability of 1/100 that for all methods a bug
is created in each line of code.

In our simulation of the traditional waterfall model, all the code is created and then
it is tested. Because functions are created and tested before integration, the simulation
has long programming phases of 2000 programming hours between test phases. The
testing cycles are much shorter in iterative models such as the Rational Unified
Process [6]. We simulate this by having programming phases of 400 hours between
testing phases. In eXtreme Programming [1] using the Test First approach, tests are
written as the first step and the code is tested as soon as it is created.1 We simulate
this approach by testing after every 100 hours of programming. In our simulation, the
testing cycle is always 200 hours, divided evenly between the creation of new tests
and test execution, regardless of how often it is performed. As a result, in our
simulation of eXtreme Programming each testing phase is longer than the
programming phase to which it is attached. This division of time is not based on data
from the literature but represents a percentage of testing time between 10% and 66%.
Our goal is not to claim that one is better than the other, but to show that with proper
management, one can optimize the length of the coding phase.

Before running the simulation, we estimated that the 2000 hour programming
phase would be too long and result in a very long system test phase. We thought 100
hours (simulating eXtreme Programming) would be too short, as most of the time is
spent in testing. Our results showed that with our specific simulation parameters,
eXtreme Programming (simulating only the Test First aspects) works best. We
believe that the main reason for this result is that the debugging time is shortest when
almost no time passes between when the bug is introduced until it is found by a test.
In our simulation, we see that the debugging time is indeed very small for extreme
programming. This accords with our intuitive reasoning that a developer presented
with a bug as they write the code would find it easier to locate and fix. Figure 3 shows
the fraction of the project time spent on programming. As expected, this number
decreases with time as more time is spent on testing. Also, according to accepted

1 The implications for development timescales of the folding of design work into programming

that occurs in extreme programming is not considered in this paper.

 An Open Source Simulation Model of Software Development and Testing 131

wisdom, the smaller the fraction of the time you initially spend on programming and
the more you stress quality, the better your project will be. This can be seen when
comparing eXtreme Programming with other paradigms. Less time is spent on
programming initially but the progress is faster and the project finishes earlier. A
counter-intuitive result, which can be seen in the long cycle (2000) line in Figure 3, is
that the proportion of time spent on programming rises significantly toward the end of

Fig. 3. Fraction of the project spent on programming. Each curve denotes a different length of
the programming phase.

Fig. 4. System size vs. programming time for three approaches to programming. Each curve
denotes a different length of the programming phase.

132 S. Ur, E. Yom-Tov, and P. Wernick

the project. Clearly, when the quality is lower, more time is spent on bug fixing (a
programming task) toward the end of the project. Figure 4 shows the time taken to
complete the project, in hours. The actual results are:

• Waterfall: 68600 hours to complete, 20800 hours to reach system test
• Iterative: 43800 hours to complete, 30000 hours to reach system test
• Test First: 27300 hours to complete, 26400 hours to reach system test

As expected, with a waterfall process, developers reach the system testing phase
faster than in the iterative model; however, the system testing phase is longer and as a
result the total time is longer. The unexpected (for some of us) result was that the Test
First approach is so effective that not only is the system testing phase very short, but it
is actually reached faster than by the iterative process.

Because this simulation runs until the bug count reaches a specified value, it is
impossible to compare it with experiments where remaining bugs are counted at the
end of the experimental procedure. In an experiment with programmers working
under laboratory conditions, George and Williams [4] found that a Test First approach
resulted in code that passed 18% more black box tests but took 16% more time. We
believe that George and Williams’ subjects are likely to have reached the same bug
count as the waterfall users in less time. This result is reflected in our simulation,
although our simulation shows a greater reduction in time than George and Williams’
results might suggest.

3.2 Evaluating Pair Programming

Pair programming, as defined in http://en.wikipedia.org/wiki/Pair_programming, is a
practice that requires two software engineers to participate in a combined
development effort at one workstation. Each member performs the action the other is

Fig. 5. Program lines vs. programming type for a large project

 An Open Source Simulation Model of Software Development and Testing 133

Fig. 6. Program lines vs. programming type for a small project

not currently doing. For example, while one types in unit tests the other thinks about
the class that will satisfy the test . The person doing the typing is known as the driver
while the person guiding is known as the navigator. It is often suggested that the two
partners switch roles at least every half-hour. In this section we would like to show
how our simulation model can evaluate the utility of pair programming.

We estimated that in pair programming the code generation rate would be halved,
since two people are writing the same amount of code previously written by one
person. Studies have been done on the amount of code produced by pairs [18], but the
data relate to the productivity of the project, which for us is output and not input.
While halving output is rather harsh, we have chosen this number as a lower bound on
the basis that, if pair programming with this value is beneficial, it would be even more
beneficial with a more optimistic productivity value. We also simulated a reduction in
the number of bugs generated since two pairs of eyes are looking for bugs, for which
we used a rate of 300/356 suggested by Williams et al. [18].

Our simulation showed that the gain or loss in productivity depends on the project
size. In larger projects, as shown in Figure 5, careful programming is highly rewarded —
not only is the total project time faster but the system test phase is reached earlier due to
the decreased amount of debugging. For smaller projects, which have been studied more
in the literature (e.g. [18]), there is a productivity cost for pair programming. This can be
seen in Figure 6 where the arrow indicates the end of the project for single programmers.
Hence, while the jury may still be out on the question of whether pair programming
improves productivity for smaller projects, our simulation shows that the advantages are
quite clear for larger projects. Our findings differ from those obtained buy Williams et al.
in small-scale experiments [18], where a gain from adopting pair programming was
found even for small projects. It is possible that our simulation of an industrial process

134 S. Ur, E. Yom-Tov, and P. Wernick

differs from the experimental protocol of Williams et al. which was based on students’
assignments, or results from their the use of student programmers.

Our results suggest that the pros and cons of adopting pair programming for any
particular project depends on a number of factors not necessarily captured in small-
scale, single cycle experiments such as those of Williams et al. [18]. In this particular
they parallel the simulation-based work of Wernick and Hall [16]. In the latter case,
the effect of adopting pair programming on long-term maintainability of a software
system is suggested as an element that needs to be quantified as part of a cost/benefit
analysis; here, system size is another aspect to take into account.

Our method of implementing the pair programming paradigm described above can
also be viewed as equivalent to early testing, as fewer bugs are introduced. In our
simulation, there is a heavy penalty for late debugging, as is consistent with the
literature. In conditions where such a heavy penalty is not relevant, the simulation
results will be different.

3.3 Evaluating Test Automation

Using our simulation, we have investigated whether it is worthwhile to automate tests.
We simulated automated tests as tests that cost five times as much to design, compared
with typical industry figures of 3 to 10 [10] but can be executed at minimal human
resource cost. We have not allowed for the maintenance cost of automated tests, which
can be much higher than for manual tests. In our simulation, when a test is executed
more than once, the only bugs it can find are the bugs that were introduced to the code
after the previous run (due to bug fixes). Onoma et al. [12] observe that the main
reason stated for automating testing is to ensure that newly introduced bugs are found
as soon as possible after their introduction to the system code.

Our model was modified to simulate the partial automation of testing adopted in
test-driven development: “With TDD, all major public classes of the system have a
corresponding unit test class to test the public interface, that is, the contract of that
class … with other classes (e.g. parameters to method, semantics of method, pre- and
post-conditions to method).” ([11]; our emphasis). Automating the tests results in a
number of changes that impact on the simulation results, some of them in a non-
intuitive way. Creating an automated test takes longer then creating a manual one as
programming effort is involved. This means that, since in the simulation the resource
allocated to each testing period is fixed, there are initially fewer tests performed on
the code.

One surprising result of our simulation runs is that when automated tests are used
programming proceeds faster. This is due to the fact that fewer bugs are found
because fewer tests are executed and a lower percentage of the time is spent on
debugging. However, these bugs still need to be located and fixed before the software
is released, so later, during the system tests, more time is spent fixing the bugs.
Another obvious trade-off is between running many tests a few times and running
fewer tests many times. Usually, one will not choose one extreme. i.e. automating all
tests, over the other, but will choose to automate a number of tests and perform the
rest manually. Marick [10] states that “The cost of automating a test is best measured

 An Open Source Simulation Model of Software Development and Testing 135

by the number of manual tests it prevents you from running and the bugs it will
therefore cause you to miss”. He also states that “A test is designed for a particular
purpose: to see if some aspects of one or more features work. When an automated test
that’s rerun finds bugs, you should expect it to find ones that seem to have nothing to
do with the test’s original purpose. Much of the value of an automated test lies in how
well it can do that.” The cost of developing automated tests suggests that some tests
should be automated and some should not. In our model we provide support for the
simulation of different mixes of automated and manual tests.

Fig. 7. Performance of automated and manual testing

In the scenario presented in Figure 7, given the parameter values we have used,
i.e., an automated test is five times more expansive to write but have no execution
cost, we see the benefit gained from automation is outweighed by the fact that fewer
tests are initially created; while system test was reached earlier with automated testing
(12,500 compared to 24,404 hours) because less unique tests were performed, the
project was completed much later (60,622 compared to 38,565 hours).

Maximilien and Williams [11] have reported the results of an industrial case study
using pre-written test cases for unit testing. The IBM test-driven development process
examined in their report resulted in an error rate reduced by 50% and work completed
on time. This was achieved with automated test cases covering 80% of the “important’
classes” [11: 566]. A question that needs to be studied is whether the benefits were
gained from the automation or from the investment in unit testing. Our simulation
points to the latter, and poses a question regarding the use of tools like JUnit and the test

136 S. Ur, E. Yom-Tov, and P. Wernick

automation of unit testing in eXtreme Programming. Is the practice of creating
automated tests for unit testing efficient because of, or despite, the automation aspects?
Maybe it is even more efficient to do these tests without the automation.

4 Summary

The goal of our work has not been to claim that Test First, pair programming and
manual testing are superior to the alternatives; rather it is to show how the open-
source simulation model described in this paper may be used to evaluate such claims.
The research presented here demonstrates how the model can be used to evaluate
software process changes, in this case testing the relative merits of different testing
and programming paradigms. Using the simulation, we have obtained results which
suggest that even though these approaches are justified in some situations, they may
not be valid for all software development projects. For smaller programs, neither Test
First nor pair programming seem always to be beneficial; test automation may be
preferable when much larger programs are created. These results provide some insight
when reading opinions claiming that the results of such process changes are always
positive. To generalize on this observation, our simulation model can be used to
predict the impact of proposed improvements on project development before these
changes are tested in real projects.

Some of our simulation results can be directly attributed to the fact that the cost of
finding and fixing a bug rises dramatically when a large amount of code has been
written between the introduction of the bug and its discovery. If techniques such as
delta debugging [5] which reduce the cost of searching for the bug become more
prevalent then current simulation runs will have to be revisited.

From the experiments conducted with our simulation model, we reach a number of
conclusions. First, testing early is important; in fact, the Test First approach outperforms
other testing strategies. Second, pair programming may or may not improve project
timescales, depending on the size of the system being developed. Under simulated
conditions, larger systems perform better and smaller systems perform worse than in
non-pair programming. Third, automated testing is sometimes over-rated; however,
further discussion of this conclusion is beyond the scope of this paper.

5 Future Work

In addition to refining our simulation model and its outputs to reconcile differences
from the published results described above, we envisage that our simulation can be
extended or amended to address the following:

• The implications of the need to develop test code for automated testing. In
modern testing, the testing code is itself a development project. We need to
model test creation as a project with its own bugs and costs. This is a fairly
natural extension of the model in which two related projects are developed
concurrently.

• The effect of adopting from agile methodologies techniques other than the pair
programming, automated testing and Test First examples described above.

 An Open Source Simulation Model of Software Development and Testing 137

• Evaluating the effect on software costs of varying the sizes of the components
and interface. This would include an examination of definitions of the ‘size’ of a
component more sophisticated than the number of lines of code it contains,
reflecting inter alia the complexity of the interfaces it uses (including the code
behind that interface) and the type of code (e.g. control or GUI) being developed.

References

1. Beck K. Extreme Programming Explained. Addison Wesley Professional, 2000.
2. Capers Jones T. Estimating Software Costs. McGraw-Hill, 1998.
3. Capers Jones T. Applied software measurement: assuring productivity and quality.

McGraw-Hill, Inc., New York, NY, USA, 1991.
4. George B. and Williams L.A. An Initial Investigation of Test Driven Development in

Industry. Proc. ACM Symposium on Applied Computing (SAC) 2003, March, 2003,
Melbourne, FL, USA. ACM, 2003.

5. Holger C. and Zeller A. Locating Causes of Program Failures. Proc. 27th International
Conference on Software Engineering (ICSE 2005), St. Louis, Missouri, May 2005.

6. IBM Rational Unified Process: Best practices for software development teams,
http://www-128.ibm.com/developerworks/rational/library/253.html, accessed Dec. 2005.

7. Kramer C. (2001) Black Box Software Testing, Section: 7: The Black Box
Testing Organization; available at http://testingeducation.org/course_notes/kaner_cem/
ac_200108_blackboxtesting/blackboxtesting_07_blackbox_testing_group.pdf, accessed 11
December 2005

8. Laitenberger O, and DeBaud J. An Encompassing Life-Cycle Centric Survey of Software
Inspection, report ISERN, 1998, pp. 98-32; Fraunhofer Institute for Experimental Software
Engineering.

9. Madachy R.J. System Dynamics Modeling of an Inspection Based Process. Proc.
International Conference on Software Engineering, 1996

10. Marick B. When should a test be automated? http://www.testing.com/writings/
automate.pdf, 1998, accessed 16 December 2005.

11. Maximilien E.M. and Williams L. Assessing test-driven development at IBM; Proceedings
of the 25th International Conference on Software Engineering, 2003, p.564– 569.

12. Onoma A.K., Tsai W.T., Poonawala M. and Suganuma H. Regression testing in an
industrial environment, Comm. ACM, 41 (5), 1998, pp. 81-86.

13. Raffo D., Harrison W., Kellner M.I., Madachy R., Martin R., Scacchi W. and Wernick P.
Guest Editors’ Introduction: Special Issue on Software Process Simulation Modelling; J.
Systems and Software, 46 (2/3), April 1999

14. Rothermel G. and Harrold M. J. Analyzing Regression Test Selection Techniques. IEEE
Transactions on Software Engineering, V.22, no. 8, August 1996, pages 529-551.

15. RTI The Economic Impacts of Inadequate Infrastructure for Software Testing, Final
report, May 2002; retrieved from http://www.nist.gov/director/prog-ofc/report02-3.pdf on
21 June 2006.

16. Wernick P. and Hall T. The Impact of Using Pair Programming on System Evolution: a
Simulation-based Study; Proc. ICSM, 2004.

17. Wernick P. and Scacchi W. Guest Editors’ Introduction: Special Issue on ProSim 2003.
Software Process: Improvement and Practice, 9 (2), April-June 2004.

18. Williams L., Kessler R.R. Cunningham W. and Jeffries R. Strengthening the Case for Pair
Programming, IEEE Software, 17, 4, July/Aug. 2000, pp. 19-25.

ExpliSAT: Guiding SAT-Based

Software Verification with Explicit States

Sharon Barner1, Cindy Eisner1, Ziv Glazberg1, Daniel Kroening2,
and Ishai Rabinovitz3,�

1 IBM Haifa Research Lab
{sharon,eisner,glazberg}@il.ibm.com

2 ETH Zürich
daniel.kroening@inf.ethz.ch

3 Mellanox Technologies
ishai@mellanox.co.il

Abstract. We present a hybrid method for software model checking
that combines explicit-state and symbolic techniques. Our method tra-
verses the control flow graph of the program explicitly, and encodes the
data values in a CNF formula, which we solve using a SAT solver. In
order to avoid traversing control flow paths that do not correspond to a
valid execution of the program we introduce the idea of a representative
of a control path. We present favorable experimental results, which show
that our method scales well both with regards to the non-deterministic
data and the number of threads.

1 Introduction

In the hardware industry, model checking [6] is one of the most commonly used
formal verification techniques. However, while computer programs are just as
error-prone as circuitry, model checking has not yet been adopted by the soft-
ware industry on a wide scale. Hardware model checkers do not perform well on
software due to the state explosion problem, which is especially acute in software.
Specialized software model checkers such as Spin [13], Zing [1] and VeriSoft [11]
attempt to address this problem. However, most existing software model check-
ers use explicit-state enumeration, and thus, are unlikely to scale to programs
that use large amounts of data.

In the past, we have applied symbolic methods to the software verification
problem in order to enable the verification of programs with non-trivial amounts
of data [3,4,8,17,9,18]. Other symbolic methods were introduced by NEC [15] and
SLAM [2]. Symbolic model checking handles non-deterministic data efficiently,
whereas explicit-state model checking handles non-deterministic scheduling of
concurrent processes easily using partial order reduction [14]. An additional ad-
vantage of explicit-state model checking is that pointer dereferencing is trivial.
� The work described in this paper was performed while the author was an employee

of the IBM Haifa Research Lab.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 138–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ExpliSAT: Guiding SAT-Based Software Verification with Explicit States 139

We present a hybrid explicit-state and SAT-based method for software model
checking. Our approach combines the merits of SAT-based symbolic model
checking and explicit-state model checking using a hybrid data structure that
stores both an explicit state vector and a symbolic CNF formula for the state.
JPF [16] implements a similar hybrid approach and uses theorem proving to rea-
son about the symbolic part. Our contribution is a method to guide the symbolic
search towards legal program paths, using explicit values and a representative.
As we show, the use of explicit values and a representative allows optimizations
such as the Partial Order Reduction to be used in more cases than the simple
hybrid approach of JPF.

Our method verifies invariant properties. We support user-specified assertions
and additional implicit properties that must hold in every state, such as “no
NULL pointer dereference”, “no out-of-bounds array access”, and “no data race”.

Dynamic verification algorithms use sophisticated heuristics for guidance to
likely locations of programming errors [10]. These heuristics are applicable for
our method as well, as concrete program states are available.

We implemented our hybrid algorithm for concurrent C++ programs in a
prototype named ExpliSAT. Our experimental results show that ExpliSAT out-
performs state-of-the-art purely explicit or symbolic algorithms, and scales well
both with regards to the non-deterministic data and the number of threads.

Related Work. Though most model checkers for software use explicit-state enu-
meration, e.g., Spin [13], Zing [1], and Verisoft [11], there exist several purely
symbolic model checkers. CBMC [17] performs symbolic simulation on sequential
programs. It addresses the path-explosion problem by transforming the program
into static single assignment (SSA) form [7]. TCBMC [18] is an extension of the
algorithm to concurrent programs. In contrast to CBMC, the approach presented
in this paper is based on building SSA for single control paths only, which results
in significantly smaller SAT instances. In addition, a pre-determined bound on
the number of loop iterations or recursion steps is not required.

JPF [16], originally an explicit-state model checker for Java Bytecode, now
features a hybrid state representation similar to the one we propose. JPF in-
struments the code such that it builds a symbolic formula when executed. JPF
utilizes a theorem prover for examining the symbolic representation, as opposed
to our use of a SAT solver. In JPF, the full symbolic formula is passed to the
decision procedure; no attempt is made to reduce its size. JPF tries to avoid ex-
ploring non-legal control paths by calling the theorem prover to check whether
there exists an execution that follows the path. In contrast, our method of guid-
ing the symbolic search allows us to avoid exploration of non-legal control paths
without calling the SAT solver in most cases.

DART [12] integrates symbolic execution into a random test generator. It
also replaces symbolic values by explicit values, but only if the solver is un-
able to handle the symbolic constraint. Explicit values are not used to simplify
constraints. Concurrency is not supported in DART but it is supported in its
successor, CUTE [19].

140 S. Barner et al.

Outline. The rest of the paper is organized as follows. Section 2 states the pre-
liminaries. Section 3 shows how to explore only the control paths of the program
explicitly while representing all executions symbolically. Section 4 defines the
representative and shows how it can be used to guide the search. Section 5
presents our experimental results.

2 Preliminaries and Definitions

We first define the control flow graph (CFG), which is an abstract representation
of a program. A vertex in a CFG represents a program statement, and there is
a designated vertex representing the initial statement of the program. An edge
in the CFG represents the ability of the program to change the control location.

For the purpose of this paper, we consider the CFG to be ”flat”. That is,
the CFG considers the whole program as one piece, in which procedure calls are
inlined. Therefore the CFG may be infinite. Note that such a CFG spares us the
effort of paying special attention to the call stack.

Definition 1 (CFG). A control flow graph (CFG) is a directed graph G =
〈V, E, μ〉 where V is the set of vertices, E is the set of edges, and μ ∈ V is the
initial vertex.

We assume that each conditional statement has only one condition, i.e., the
vertex v of a conditional statement has an out-degree of exactly 2, and we define
the guard of an edge based on the condition of its source. The guard represents
the condition that must be satisfied if the program changes its control location
by traversing the edge.

Definition 2 (cond(v), guard(e)). Let cond(v) denote the condition of a con-
ditional statement v. For an edge e = (v, u), guard(e) equals true if v is not
a conditional statement, cond(v) if the edge is traversed when the condition is
satisfied, and ¬cond(v) otherwise.

Given a concurrent program, we build a CFG representing it using the CFGs of
its threads as follows. We denote the CFG of thread t by Gt = 〈Vt, Et, μt〉, and
the guard labeling function of thread t by guard t(e). The control flow graph G
of the concurrent program is 〈V, E, μ〉 where V = V1 × V2 × . . ., μ = (μ1, μ2, . . .)
and E contains edges (v̄, ū) such that only one thread changes its control lo-
cation. Formally, (v̄, ū) ∈ E with v̄ = (v1, v2, . . .) and ū = (u1, u2, . . .) iff
∃k.(vk, uk) ∈ Ek ∧

∧
i�=k vi = ui. The guard of (v̄, ū) is equal to the guard of the

thread that makes the transition. If k denotes that thread, then guard((v̄, ū)) =
guardk((vk, uk)).

Definition 3 (Explicit State). An explicit state s of the program is a triple
〈t, v, L〉, where t ∈ N denotes the number of threads, v ∈ V denotes the current
control location of each thread (i.e., the vertex in the CFG) and L denotes the
valuation of all the variables of the program over their domain. We write s |= ϕ
iff the predicate ϕ evaluates to true if evaluated using L, and s �|= ϕ otherwise.

ExpliSAT: Guiding SAT-Based Software Verification with Explicit States 141

Definition 4 (Kripke Structure of a Program). Let the CFG of the pro-
gram be given by the triple 〈V, E, μ〉. The Kripke structure of that program is
the triple 〈S, I, T 〉 where S is the set of explicit states, I = {〈t, v, l〉 | v ∈ μ} ⊂ S
is the set of initial states of the program and T = {(〈t1, v1, l1〉, 〈t2, v2, l2〉) | ∃e =
(v1, v2) ∈ E s.t. 〈t1, v1, l1〉 |= guard(e)} is the set of transitions between the
states.

Definition 5 (Execution). An execution π of a program is a sequence of ex-
plicit states (s1, s2, . . . , sn) s.t. s1 ∈ I and for every 1 ≤ i < n. (si, si+1) ∈ T . A
state s is said to be reachable iff there exists an execution π that contains s.

The property we are interested in is reachability of states s that violate a given
predicate p(v), where v is the control location of s. As an example, if v is a
user-specified assertion with condition x, p(v) is ¬x.

Definition 6 (Control Path). A control path c of a program is a path through
the CFG of the program, i.e., a finite sequence (v1, . . . , vn) of nodes of the CFG
where v1 = μ and ∀1≤i<n.(vi, vi+1) ∈ E. The set of control paths is denoted by
C. If c is a projection of an execution π on V , we call c a legal control path.

We denote the projection of an execution π onto the CFG by cp(π). The exe-
cution π is said to follow the control path cp(π). There may be many different
executions that follow the same control path. They differ only in the data (i.e.,
the valuation of the variables).

The Static Single Assignment (SSA) [7] form is a representation of a program
in which every variable is assigned exactly once. Existing variables in the original
representation are split into versions. New variables are distinguished from the
original name with a subscript such that every assignment has a unique left
hand side. In SSA form, the function returning a non-deterministically chosen
input input() is replaced by an indexed variable input i, which denotes the value
returned by the ith call to the input() function.

CBMC [17] transforms a whole program into SSA. In contrast to that, we only
consider the SSA of a control path, which is a much simpler transformation, as
a control path is linear whereas a program is branching. The variable x in a
particular assignment to x may be indexed differently in different control paths.

Since every variable in the SSA form of a control path is assigned exactly
once, it can be considered as a set of constraints that must be satisfied in any
execution that follows that control path. We denote the conjunction of the SSA
constraints of a control path c by SSA(c).

Definition 7 (Path guard). The path guard of a control path c is denoted by
cpg(c) and is the conjunction of the guards of all edges in c given that c is in
SSA form:

cpg(v1, v2, . . . , vn) =
∧

1≤i<n

guard(vi, vi+1).

142 S. Barner et al.

3 Symbolic Verification Using Explicit CFG Traversal

3.1 The Näıve Hybrid Algorithm

We propose a model checking technique that traverses the abstract representa-
tion of the program represented by the CFG, rather than the Kripke structure
of the program. That is, we explicitly explore only the control paths and use
symbolic methods to cover the various executions.

We define the following equivalence relation over all executions of a program:

Definition 8 (Control equivalent). Two executions π1, π2 are said to be con-
trol equivalent, denoted π1 ∼ π2, iff they follow the same control path, i.e.,
cp(π1) = cp(π2).

The equivalence classes that this relation induces serve us in decreasing the
size of the software model on which we perform an explicit search. We explicitly
traverse each control path in the CFG. Each such control path is a representative
for all the executions in the control equivalence class. Note that not every control
path in the CFG has an associated execution. We first present a näıve algorithm
that ignores this detail, then introduce the technique we use to avoid traversing
such control paths.

The näıve algorithm traverses all control paths of the CFG and maintains a
CNF encoding of each control path. The encoding is constructed from the SSA
form of the path using the constraints given by the guards and the assignments
to variables. We use a propositional SAT solver for searching for a satisfying
assignment to the encoding of the path and the negation of the property asso-
ciated with the last control location. We benefit from the fact that SAT-solvers
are known to be practically efficient for large number of variables.

1. a = 1;
2. if (a>0) {
3. a = input();
4. if (a ≤ 1) {
5. c = a+2;
6. assert(c<3);
7. }
8. if (a≤1)
9. a=2;
10. else
11. a=1;
12. }

Fig. 1. A non-deterministic program

1. a1 = 1;
2. if (a1>0) {
3. a2 = input1;
4. if (a2 ≤ 1) {
5. c1 = a2+2;
6. assert(c1<3);

1. a1 = 1;
2. if (a1>0) {
3. a2 = input1;
4. if (a2 ≤ 1) {
8. if (a2≤1)
10. else
11. a3=1;

Fig. 2. The paths π1 and π2

ExpliSAT: Guiding SAT-Based Software Verification with Explicit States 143

If a satisfying assignment is found, there exists an execution that follows the
control path and violates the property. The satisfying assignment contains a
valuation of the non-deterministic choices made on the control path, and thus,
the extraction of a counterexample is straight-forward.

For example, consider the program in Fig. 1. Two possible control paths π1
and π2 of this program are shown in their SSA form in Fig. 2. The guards of
these two paths are:

cpg(π1) ⇐⇒ (a1 > 0) ∧ (a2 ≤ 1)
cpg(π2) ⇐⇒ (a1 > 0) ∧ ¬(a2 ≤ 1)

The SSA constraints of these control paths are given by the following two
equivalences:

SSA(π1) ⇐⇒ (a1 = 1) ∧ (a2 = input1) ∧ (c1 = a2 + 2)
SSA(π2) ⇐⇒ (a1 = 1) ∧ (a2 = input1) ∧ (a3 = 1)

Let c = (v1, . . . , vn) be a control path. If there exists a satisfying assignment
to ζ ≡ cpg(c) ∧ SSA(c) ∧ ¬p(vn), then there exists a reachable state s with
control location vn that violates the property p(vn). By transforming ζ to CNF,
we can use a SAT solver to check if there exists an execution that follows c and
violates the property. For example, for π1:

ζ ≡ (a1 > 0) ∧ (a2 ≤ 1) ∧
(a1 = 1) ∧ (a2 = input1) ∧
(c1 = a2 + 2) ∧ ¬(c1 < 3)

3.2 Simplifying Constraints Using Explicit Values

The näıve algorithm proposed above is improved using the notion of explicit
values.

Definition 9 (Explicit Values). For a given control path c in SSA form, a
variable has an explicit value if any two executions π1, π2 with π1 ∼ π2∧cp(π1) =
cp(π2) = c assign the same value to this variable. If a variable does not have an
explicit value, it has a symbolic value.

Obviously, if an expression has an explicit value, it can be replaced by a constant
during the traversal of the control path. Symbolic values may differ from one
execution to the other even if both executions follow the same control path,
while explicit values do not differ.

Refer to control path π1 in Fig. 2. The value of variable a1 is an explicit
value, as every execution that follows this control path assigns 1 to a1. On the
other hand, the value of variable a2 is symbolic, as the value of a2 may differ in
different executions that follow this control path.

Note that explicit values may depend on non-deterministic choices. In Fig. 3
the value of x depends on input() yet it is explicit in the control path (1, 3, 4),

144 S. Barner et al.

1. if (input())
2. x=3;
3. else
4. x=2;

Fig. 3. The value of variable x is explicit
on the path (1,3,4) even though it de-
pends on non-deterministic data

1. x=input()
2. if (x==3)
3. y=0;
4. else
5. z=6;

Fig. 4. The value of variable x is explicit
on the path (1,2,3). Syntactically, we ap-
proximate it as a symbolic value.

since every execution that follows this path assigns the value 2 to x. Fig. 4 shows
another example, in which there exists a control path (1,2,3) on which x is always
assigned 3, and thus, has an explicit value.

As identifying whether a value is explicit in a given control path is hard,
we make a syntactic, but sound approximation: Values returned by input() are
symbolic, and values that are a result of an assignment of symbolic values are also
symbolic. In any other case, the value is explicit. We denote the set of explicit
values for a given control path c by E(c). In some cases, our approximation
classifies explicit values as symbolic. For instance, it classifies x in Fig. 4 as
symbolic on the control path (1,2,3). However, it never classifies a symbolic
value as explicit.

Definition 10 (Restricted Guards). Let e ∈ E denote an edge in the CFG
and c denote a control path. We define the restricted guard guard′(e, c) as a
function over e ∈ E and c. If guard(e) has an explicit value in c, then guard′(e, c)
is that explicit value, otherwise guard′(e, c) = guard(e). The restricted path
guard cpg′(c) is the conjunction of the restricted guards of the edges on c =
(v1, v2, . . . , vn), i.e., cpg′(c) =

∧
1≤i<n guard′((vi, vi+1), c).

Pointers. The value of a pointer is often, at least in part, an explicit value.
Though a pointer holds the address of a memory location, which may change
from one execution to the other, it conceptually points to an object. Pointers can
therefore be seen as a tuple 〈base, offset〉 where base is the base object and offset
is the offset within that object. The value of a pointer is generally determined
in four different ways:

– Explicit address of an object (e.g., operator &): In this case, the value of the
pointer is always explicit.

– Memory allocation (e.g., malloc): In this case, the pointer may point to any
free memory location, hence its value is symbolic. However, since concep-
tually, the value is a fresh cell location in the heap, we may optimize this
and treat its value as an explicit value: the base object is given the value
of a fresh object that was not used before. This optimization may conceal
certain bugs that might occur as a result of accessing an adjacent memory

ExpliSAT: Guiding SAT-Based Software Verification with Explicit States 145

foo(int* p) {
...

}

Fig. 5. When examining foo procedure
on its own, the value of the pointer p is
symbolic, and is equivalent to p=input()

void main() {
int a,b;
foo(&a);
foo(&b);

}

Fig. 6. When examining the entire pro-
gram, the value of the pointer p in foo
is explicit: in the first instance it is the
address of a and in the second it is the
address of b

location or using values of an already freed memory location. However, since
we detect an invalid pointer dereferencing and the use of uninitialized values,
this optimization can be used without concealing any bugs. Therefore, the
value of a pointer is explicit in this case.

– Non deterministic value (e.g., input to the verified program): both the base
object and the offset have symbolic values.

– Pointer arithmetic (e.g., p = q + 1): The base value is left unchanged with
regards to the original pointer. If it was an explicit value, it remains so. The
value of offset is explicit only if the original pointer’s offset value is explicit
and the arithmetic calculation uses solely explicit values.

When examining a program from its beginning, as opposed to starting the
verification from a procedure with parameters, most pointers are of explicit value.
In Figure 5 the value of the pointer p is non-deterministic since the procedure
foo is examined as a stand-alone function. In Figure 6, the value of p is explicit
in each call of the foo function. When verifying a complete program, the value
of base is usually an explicit value. Thus, dereferencing of pointers, which is
problematic for most symbolic model checkers, is usually simple using our hybrid
state representation. Let b denote the object indicated by base. An expression
*p with p = 〈base, offset〉 in which the value of base is explicit, can be replaced
by b if b is a simple or struct type, and by b[offset] if b is of an array type.

When a pointer has an explicit value, pointer dereferencing is done the same
way as in explicit model checking. Otherwise, if its value is symbolic, we may
encode its value in the SSA(c), similarly to CBMC [17], or use lazy initialization,
as described in JPF [16]. Note that when base is explicit, as it is usually the
case, both methods are improved, since they take into account only the different
possible offsets and not all the existing objects.

When computing ζ for verifying a control path, expressions that have an
explicit value can be replaced by a constant, as justified by the following lemma.
We can use the restricted path guard cpg′(c) (Def. 10) instead of the full path
guard cpg(c) (Def. 7).

146 S. Barner et al.

Lemma 1. Let c = (v1, . . . , vn) be a control path. There exists a satisfying as-
signment to ζ′ ≡ cpg′(c) ∧ SSA(c) ∧ ¬p(vn) iff it also satisfies ζ ≡ cpg(c) ∧
SSA(c) ∧ ¬p(vn).

Continuing our previous example, the guards are simplified as follows:

cpg′(π1) ⇐⇒ (a2 ≤ 1)
cpg′(π2) ⇐⇒ ¬(a2 ≤ 1)

An additional improvement is that no call to the SAT solver is needed for
properties for which p(vn) is an explicit value. For data intensive programs as
well as programs with complicated control graphs, the bring up time of the SAT
solver is not always negligible.

Lemma 2. If the property p(vn) has an explicit value in the legal control path
c = (v1, . . . vn), then there exists a satisfying assignment to cpg′(c) ∧ SSA(c) ∧
¬p(vn) iff the explicit value of p(vn) is false.

Note that the implicit properties that we add, such as “no data-race”, are verified
by evaluating a predicate over each state. The näıve algorithm invokes the SAT
solver for each location in order to verify these predicates. If the predicate has
an explicit value, the SAT solver is not needed.

4 The Path Representative

We introduce the concept of the path representative. Path representatives allow
us an easy way of filtering out control paths that need not be traversed because
they do not have an associated execution path.

Definition 11 (Representative). Let c be a control path in its SSA form. A
representative ρ of a control path is a valuation of all the variables in c such that
the guards in the control path are satisfied, i.e., ρ |= SSA(c)∧ cpg(c). We denote
the set of representatives by R.

Lemma 3. Let c be a control path in its SSA form. A representative ρ exists for
a control path c iff there exists an execution πr = (s1, s2, . . . , sn) with cp(πr) = c.

The proof makes use of the fact that c is in SSA form, and thus, the last state,
sn, holds the values of all the variables that were assigned at any point during
the execution.

In our example in Fig. 1, the path (1, 2, 3, 4, 8, 9) has no representative (be-
cause if a ≤ 1 then 5 and 6 would be on the path as well). Guiding the CFG
traversal using a path representative ensures that the traversed path is a legal
path. The CFG traversal is guided by the path representative, traversing the con-
trol path it follows. Full coverage of the CFG is gained by using a representative
of each control equivalence class.

The algorithm we propose is illustrated by means of pseudo code in Fig. 7.
The algorithm maintains a hybrid representation 〈c, ρ〉 of the paths that are

ExpliSAT: Guiding SAT-Based Software Verification with Explicit States 147

// Variables: Priority queue Q ⊆ (C × (R ∪ {⊥}))
// of control paths and path representatives

HybridReachability(P)

1 Compute initial state cI

2 Q:={〈cI , ⊥〉};
3 while (Q �= ∅)
4 Let 〈c, ρ〉 ∈ Q;

5 Q:=Q \ 〈c, ρ〉;
6 if ρ = ⊥ then ρ:=GetRepresentative(c);

7 if ρ = ⊥ then continue;
8 if CheckProperty(c, ρ) then return true;
9 Q := Q ∪ GetSuccessors(P, c, ρ);

10 end
11 return false;

Fig. 7. High Level Description of the Hybrid Reachability Algorithm

explored. The first component c ∈ C is a control path. The second part ρ is
either a path representative, i.e., a valuation to the state variables, or ⊥, which
denotes the case that the assignment has not yet been computed.

The algorithm uses a priority queue Q of hybrid path representatives that are
to be explored. In line 2, the initial state is put into the queue. While the queue
is non-empty, a search heuristic removes a hybrid path representative 〈c, ρ〉 from
the queue (lines 4 and 5). The algorithm checks if there is already a representative
for c. If ρ = ⊥, GetRepresentative(c) is called to compute a representative for
c (line 6). If such a representative does not exist, c is not a legal control path and
thus, is not examined (line 7).

In line 8, the algorithm proceeds by calling CheckProperty. If the property
is violated, then a counterexample was found.

Finally, the successors of the last location of c are computed by GetSucc-

essors(P, c, ρ), appended to c, and added into the queue Q (line 9).
The procedure CheckProperty(c, ρ) determines if the last vertex of the

path c is an assertion (Fig. 8). If so, it checks if the condition p of the assertion has
an explicit value (line 3). If so, ρ provides the truth value of p for all executions
that follow c. If p is symbolic, a SAT solver is used to check if p can be violated
(line 6). The formula passed to the SAT solver uses the restricted guard simplified
using the explicit values given by ρ.

4.1 Computing the Path Representative

The procedure GetSuccessors(P, c, ρ) computes the successor states of the
last state vn of a given control path c = (v1, . . . , vn). If vn is not a conditional,
the computation of vn+1 and a representative ρ′ for (v1, . . . , vn, vn+1) is straight-
forward. If vn contains a non-deterministic choice ι, ρ′(ι) is simply an arbitrary

148 S. Barner et al.

CheckProperty(c ∈ C, ρ ∈ R)

1 Let c = (v1, . . . , vn);

2 if vn = assert(p) then
3 if p ∈ E(c) then
4 if ρ(p) = false then return true;
5 else
6 if IsSatisfiable(

7 cpg′(c) ∧ SSA(c) ∧ ¬p) then
8 return true;
9 endif

10 endif
11 return false;

Fig. 8. Checking assertions using the path representative

but constant value. By choosing one possible value of ι, we maintain a valid
representative of the explored control path. Thus, if we have an explicit value for
the condition, we can traverse a conditional statement without a call to our SAT
solver, as opposed to the call to the theorem prover needed by JPF [16]. However,
since we also maintain a symbolic representation of the value of ι, backtracking to
vn, as performed by explicit state model checkers such as SPIN, is not necessary.
If the value of ι affects future control decisions, different valuations are examined
when other representatives are computed using GetRepresentative(c).

If vn is a conditional, let v′(α) denote the successor of vn for a given truth
value α ∈ {true, false} of cond(vn). If cond(vn) has an explicit value, let t =
ρ(cond(vn)) denote that value. The only successor of 〈c, ρ〉 is 〈(c, v′(t)), ρ〉.

If cond(vn) is symbolic, we still compute the truth value t of the guard given
by the path representative ρ. Two successors are computed:

1. 〈(c, v′(t)), ρ〉 corresponds to the branch suggested by the truth assignment
made by the representative. Note that ρ is also a representative for (c, v′(t)).

2. 〈(c, v′(¬t)), ⊥〉 corresponds to the other branch. A new representative has to
be computed for this control path.

The priority queue Q should usually give preference to pairs that have a path
representative ρ. Only when a pair 〈c, ⊥〉 is chosen, GetRepresentative(c)
is called to compute a new representative using a SAT solver. If c is not a
legal control path GetRepresentative(c) returns ⊥, and c is not explored.
When a pair 〈c, ρ〉 is chosen, the SAT solver is not utilized. The main benefit
of using the representative is that in at least half of the cases, we avoid calling
GetRepresentative(c) and hence avoid utilizing a SAT solver.

The GetRepresentative procedure can be improved by using previous rep-
resentatives as initial partial assignments of the formula of the examined control
path. Also note that the GetRepresentative procedure is likely to produce

ExpliSAT: Guiding SAT-Based Software Verification with Explicit States 149

a large amount of similar SAT instances, and thus, an incremental SAT solver
that preserves previously learnt clauses, when applicable, should be used.

4.2 Concurrency

For concurrent programs, we explore all paths for any order of execution of the
statements in the different threads. The number of such executions is typically
exponential in the number of program statements. In traditional explicit-state
model checking, partial order reductions (POR) are applied to significantly re-
duce the size of the traversed model. In contrast to other symbolic methods that
are unable to apply this reduction, the application of POR is trivial in our hybrid
method. Thus, we are able to reduce the size of traversed model without affect-
ing the correctness of the results. POR is usually difficult if there are pointer
dereferencing operators in a statement. In contrast, for example, to JPF we often
have explicit or at least partially explicit values for pointers, and therefore in
many cases can avoid this difficulty.

In contrast to sequential programs, if two control paths c1, c2 differ only in
the scheduling of the threads, c1 and c2 may have the same representative. Thus,
when backtracking to a control path c2 that only differs in its scheduling from
another control path c1 we already traversed, we can use the representative of c1
instead of computing a new one. This optimization avoids unnecessary calls to
the SAT solver. Hence, the path representative does not guide the CFG traversal
when the branching of the CFG is the outcome of different possible schedulings.

5 Experimental Results

We have implemented our hybrid algorithm in a prototype named ExpliSAT.
ExpliSAT utilizes an internal IBM state-of-the-art SAT solver named Mage.
ExpliSAT verifies C and the POSIX thread library. ExpliSAT supports heap
memory allocation and dynamic thread creation. Like all explicit model checkers,
ExpliSAT will not terminate in the case of unbounded recursion. However, unlike
symbolic methods in the case of bounded recursion, the user is not required to
provide the bound up front. Instead, heuristics may be utilized on-the-fly in
order to decide how deep ExpliSAT should explore the unbounded recursion or
loop. Of course, in such cases, ExpliSAT does not perform as a model checker,
but rather it is simply a bug-hunting tool.

5.1 Case Studies

ExpliSAT was used internally inside IBM to verify several protocols and code
segments. In this subsection we review how ExpliSAT is used to improve IBM’s
products quality.

ExpliSAT examined a complex locking protocol in an industrial middleware
software. A prototype of the mechanism was devised, which was verified using

150 S. Barner et al.

ExpliSAT. The prototype has about 250 lines of code, in which 5 threads exercise
the locking mechanism in a non-deterministic order.

ExpliSAT detects a write-write data race in the protocol within approximately
20 seconds. The race results from a subtle definition of the critical section.

ExpliSAT was also used in the verification of communication protocol be-
tween three controllers in IBM microcode. This protocol, which is designed for
a Linux device driver, should withstand failures of controllers. During a failure
of a controller it may exhibit limited Byzantine behavior. The prototype of this
protocol has about 400 lines of code, in which 2 controllers pass 6 random mes-
sages between them. Two additional processes are used in order to simulate the
random failures of the controllers.

ExpliSAT detects that due to a failure of the receiving controller, the sending
controller may not be informed that the message was in fact received. Since
the sending controller is uncertain that the message was received, it may send
a duplicate message. Hence, the protocol should be revised and handle such
duplicate messages.

For more information on these two protocols and their verification refer to [5].
An additional verification effort using ExpliSAT was made on synchronization

code that was extracted from an IBM random test generator tool. In this code
segment, one thread makes a non-deterministic choice which should be passed
to all the other threads as well. This process may be repeated several times.

We employed the synchronization code using 4 threads. The threads were
allowed to make up to 4 non-deterministic choices. The code segment ExpliSAT
examines has about 100 lines.

ExpliSAT verifies that all the threads are synchronized on all the
non-deterministic choices. However, it detects a possible deadlock on a specific
scheduling. The entire inspection of this code takes ExpliSAT approximately
three minutes.

5.2 Artificial Examples

We evaluate the performance benefit of using a path representative using a se-
quential benchmark. We compare the performance of ExpliSAT when it utilizes
a path representative for guiding the CFG traversal with its performance when
such guidance is not utilized. As is explained in section 4.2, the path represen-

Table 1. Run time comparison of two versions of the näıve algorithm and ExpliSAT
on “Bubble-sort” benchmark. The number of bits in the non-deterministic input is
denoted by b, s denotes size of array.

Näıve algorithm ExpliSAT
Late reachability check Early reachability check

Benchmark b=8 b=16 b=32 b=8 b=16 b=32 b=8 b=16 b=32

Bubble-sort s=3 0.43s 0.43s 0.56s 2.01s 2.04 s 4.05s 0.60s 0.55s 0.85s
Bubble-sort s=4 7.44s 8.43s 12.4s 23.46s 30.37s 43.04 s 5.91s 4.94s 8.59s
Bubble-sort s=5 768.33s 885.95s 1708.26s 245.76s 282.98s 458.28s 69.58s 52.89s 90.95s

ExpliSAT: Guiding SAT-Based Software Verification with Explicit States 151

tative is used to decide what conditional branch to explore, but not for deciding
what thread schedule to follow. Hence, we compare the performance of ExpliSAT
with the näıve algorithm on a sequential benchmark. The benchmark we use is
a sorting algorithm parameterized in the array size.

We compare ExpliSAT with two different versions of the näıve algorithm. In
one version, reachability of a state is verified only when a property is examined,
i.e., only when reaching an assert statement. In this version, the algorithm
traverses the entire CFG including all the non-legal control paths. In the second
version, the reachability analysis is done at an earlier stage. As soon as a branch
in the CFG is encountered, the tool checks feasibility of each of the branches.
This version never traverses a non-legal control path. JPF implements such a
CFG traversal as well.

As can be seen in Table 1, ExpliSAT scales better than both versions of the näıve
algorithm. It is interesting to note that the early reachability analysis is not nec-
essarily better than the late reachability analysis. Using an array size of 4, the late
reachability method outperforms the early reachability method. This can be as-
cribed to the overhead of verifying reachability for every vertex in the CFG. This
overhead is worthwhile only if there are a significant number of non-legal paths in
the CFG. As an example, this seems to be the case when using array size 5.

Table 2. Run time comparison of Zing and ExpliSAT on three classes of benchmarks.
The number of bits in the non-deterministic input is denoted by b. In “Bubble-sort”,
s denotes size of array, In “Producers”, p denotes number of producers and c denotes
number of consumers.

Zing ExpliSAT

Benchmark b=2 b=4 b=6 b=8 b=16 b=8 b=16 b=32

Bubble-sort s=3 1s 3s 277s >2h >2h 0.60s 0.55s 0.85s
Bubble-sort s=4 1s 58s >2h >2h >2h 5.91s 4.94s 8.59s
Bubble-sort s=5 1s >2h >2h >2h >2h 69.58s 52.89s 90.95s

Producers p=1 c=1 1s 21s 317s >2h >2h 38.38s 41.03s 40.95s
Producers p=1 c=2 41s 690s >2h >2h >2h 73.38s 78.28s 78.57s
Producers p=1 c=3 1160s >2h >2h >2h >2h 130.82s 131.17s 141.24s
Producers p=2 c=2 18s 230s >2h >2h >2h 0.6s 0.63s 0.65s
Producers p=2 c=3 443s >2h >2h >2h >2h 0.66s 0.71s 0.70s
Producers p=2 c=4 >2h >2h >2h >2h >2h 0.72s 0.75s 0.75s

Random-Choice <1s <1s <1s 4s >2h 0.33s 0.34s 0.43s

Using three other code examples,we compare the performance ofExpliSATwith
Zing from MicrosoftResearch [1], a state-of-the-art explicit-state model checker for
software. Note that Zing and ExpliSAT are executed on different platforms1.

The first benchmark is the same as in Table 1. As the number of legal control
paths is exponential in the array size, the performance of ExpliSAT deteriorates
1 Zing was executed on Windows while ExpliSAT was executed on Linux. Both were

executed on a Pentium 4 with 2 GHz and 1GB of memory.

152 S. Barner et al.

when the array size is increased. Still, ExpliSAT scales better than Zing on this
parameter. The second comparison is a producer-consumer protocol that has a
bug in the producer code. Atomicity of the critical section is not enforced, and
thus, two producers may overflow the shared buffer. Both ExpliSAT and Zing
verify the correctness of the program if only one producer exists, and detect the
bug when two producers co-exist. We compare the performance in the number of
active consumers and producers. The third program is “Random-choice”. This
is a program with two threads, where both threads utilize the same function to
compute a value. The two threads assert that the same value was computed.
Under some rare conditions the computed values are different.

We also compare ExpliSAT and TCBMC [18] (Table 3)2. The benchmark pro-
gram has two threads that sort the same array using the bubble-sort algorithm.
Even though atomicity of the critical sections is maintained, for some inputs
and a specific scheduling, the threads fail to sort the array correctly. Unlike Ex-
pliSAT, TCBMC requires a bound on the number of context-switches, which
is denoted by n. ExpliSAT performs much better than TCBMC. It also scales
better in the array size. Though both methods are SAT-based, ExpliSAT per-
forms better since it provides the SAT solver with several small CNF formulas
unlike TCBMC which searches a satisfying assignment to one big CNF formula.
ExpliSAT allows the SAT solver to slice different literals from each CNF ac-
cording to the specific clauses this CNF entails. As opposed to TCBMC whose
CNF formula encodes all calculations in the program, including those who are
irrelevant for finding the bug that exists in the program.

Table 3. Run time comparison of TCBMC and ExpliSAT. The size of the array is
denoted by s. The number of bits in the non-deterministic input is denoted by b. The
bound on the number of context-switch TCBMC enforces is denoted by n.

TCBMC ExpliSAT

Benchmark b=8 b=16 b=32 b=8 b=16 b=32

n=6 n=10 n=6 n=10 n=6 n=10

Buggy-sort s=3 0.4s 0.2s 3.6s 4.0s 20.3s 48.3s 4.68s 4.72s 5.88s
Buggy-sort s=4 11.5s 1.3s 14.6s 58.7s 135.2s 323.0s 43.55s 37.01s 44.79s
Buggy-sort s=5 71.0s 94.1s 125.7s 3013.0s 1124.0s > 1h 140.43s 131.86s 154.44s

On all benchmarks, ExpliSAT scales much better than Zing, TCBMC and the
two versions of the näıve algorithm in the size of the non-deterministic input.
The effect the bit-vector size has on the performance of ExpliSAT is marginal.

6 Conclusion and Future Work

We have presented a novel algorithm for software verification that combines ex-
plicit and symbolic methods. Experimental results show that this hybrid rep-
resentation outperforms both conventional explicit-state model checking and
2 We provide the figures for TCBMC from [18] for reference.

ExpliSAT: Guiding SAT-Based Software Verification with Explicit States 153

purely symbolic methods. The symbolic part of the representation allows the
method to scale with an increasing amount of non-deterministic data, while the
explicit state enables powerful search and state-space reduction techniques, such
as partial order reduction. In comparison to previous hybrid approaches, our con-
tributions are the concepts of an explicit value and a representative, which are
exploited to reduce the size of the verification conditions as well as the number
of calls to the SAT solver. In addition, they allow wider application of explicit
techniques such as partial order reduction, for instance, in the case of many
pointers.

For future work, we plan to investigate automatic slicing of the formulas ac-
cording to the assertions, and the merging of control flow paths in order to reduce
the number of formulas to be checked. Another promising research direction is
to use the proof of unsatisfiability of verification conditions to direct the search
towards an error during backtracking.

References

1. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software. In CONCUR, 2004.

2. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In SPIN, pages 113–130, 2000.

3. S. Barner, Z. Glazberg, and I. Rabinovitz. Wolf - bug hunter for concurrent software
using formal methods. In CAV, pages 153–157, 2005.

4. S. Barner and I. Rabinovitz. Effcient symbolic model checking of software using
partial disjunctive partitioning. In CHARME, pages 35–50, 2003.

5. H. Chockler, E. Farchi, Z. Glazberg, B. Godlin, Y. Nir-Buchbinder, and I. Rabi-
novitz. Formal verification of concurrent software: two case studies. In Proceedings
of 4th International Workshop on Parallel and Distributed Systems: Testing and
Debugging (PADTAD), 2006.

6. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
7. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. An efficient method

of computing static single assignment form. In POPL, pages 25–35. ACM, 1989.
8. C. Eisner. Model checking the garbage collection mechanism of SMV. In ENTCS,

volume 55. Elsevier Science Publishers, 2001.
9. C. Eisner. Formal verification of software source code through semi-automatic

modeling. Software and Systems Modeling, 4(1):14–31, February 2005.
10. E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In

IPDPS, page 286b. IEEE, 2003.
11. P. Godefroid. VeriSoft: A tool for the automatic analysis of concurrent reactive

software. In CAV, pages 476–479. Springer, 1997.
12. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.

In PLDI, pages 213–223. ACM, 2005.
13. G. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,

23(5):279–295, 1997.
14. G. Holzmann and D. Peled. An improvement in formal verification. In Proc. Formal

Description Techniques, FORTE94, pages 197–211. Chapman & Hall, 1994.
15. F. Ivancic, Z. Yang, A. Gupta, M. K. Ganai, and P. Ashar. Efficient SAT-based

bounded model checking for software verification, 2004.

154 S. Barner et al.

16. S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for
model checking and testing. In TACAS, pages 553–568, 2003.

17. D. Kroening, E. Clarke, and K. Yorav. Behavioral consistency of C and Verilog
programs using bounded model checking. In DAC, pages 368–371. ACM, 2003.

18. I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent programs.
In CAV, volume 3576 of LNCS, pages 82–97. Springer, 2005.

19. K. Sen and G. Agha. Cute and jcute : Concolic unit testing and explicit path
model-checking tools. In CAV. Tool Paper, 2006.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 155–165, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evolutionary Testing:
A Case Study

Stella Levin and Amiram Yehudai

School of Computer Science
Tel-Aviv University

stellale@post.tau.ac.il, amiramy@post.tau.ac.il

Abstract. The paper presents a case study of applying genetic algorithms (GAs)
to the automatic test data generation problem. We present the basic techniques
implemented in our prototype test generation system, whose goal is to get
branch coverage of the program under testing. We used our tool to experiment
with simple programs, programs that have been used by others for test strategies
benchmarking and the UNIX utility uniq. The effectiveness of GA-based testing
system is compared with a Random testing system. We found that for simple
programs both testing systems work fine, but as the complexity of the program
or the complexity of input domain grows, GA-based testing system significantly
outperforms Random testing.

Keywords: Software testing, automatic test generation, genetic algorithms.

1 Introduction

Genetic algorithms (GAs) are known to be a robust search method in complex spaces.
GAs have been recognized as a suitable techniques for testing software, since, as
stated in [9] “Due to the non-linearity of software (if-statements, loops, etc.), the
conversion of test problems into optimization tasks usually results in complex,
discontinuous, and non-linear search space”.

The first work of Xanthakis et al [10] applying GA to test generation problem
appeared at 1992. The current fitness function representation was proposed in works
of Wegener et al in 2001 and 2002 [11, 12]. More details may be found in a survey by
McMinn [1]. We implemented a prototype test generation system based on known
techniques. The purpose of our work is to experiment using these techniques with real
life programs in order to assess the effectiveness of these techniques.

In [3] there are experimental results on simple programs. We repeat them partially
in order to validate our tool, and get similar results: for bubble sort program and
greatest common denominator both GA-based testing system and Random testing
system work fine; for triangle classification GA-based testing system outperform
Random testing.

We further experiment with a string matching program that is known to be used for
test strategies benchmark. For this program GA-based testing system outperforms

156 S. Levin and A. Yehudai

Random testing. In addition, when we vary the input domain complexity, GA-based
testing superiority is more significant.

And finally we present results of an experiment with the uniq UNIX utility. For this
program GA-based testing system outperforms Random testing even for simple input
domain – binary strings. Furthermore, for a more complex input domain – alphabet
strings – Random testing becomes impossible - it didn’t find a solution for more that 1
day, while GA-based testing system found a solution in about half an hour.

We are not familiar with other works experimenting with the impact of input
domain complexity on test generation problem.

2 Genetic Algorithm Search for Testing Problem

2.1 Genetic Algorithm

A Genetic algorithm searches among population of individuals. Every individual
codes problem input variables and represents a candidate solution as a vector of
genes. A fitness function is used to classify better solutions. The search starts from
generation of random points and every iteration creates new generation. At every
generation the fitness of all individuals is evaluated and the next generation is created
from the existing one with selection, crossover and mutation operations. These are all
probabilistic processes, and have many variations. Selection is a mechanism to choose
among the parents to form a new generation. In its simplest form it works as a roulette
wheel with slots sized according to fitness, so that a more fit individual has a higher
probability to be selected. Crossover just switches genes of parents at a random point.
Mutation randomly changes one gene.

Fig. 2.1. Example of GA operations on two individuals

Figure 2.1 presents two individuals with all genes 0 and all genes 1, respectively.
Crossover operation is performed in the middle of the gene vector. Mutation

operation is performed on the last bit of the individual. In general case the position of
crossover and the position of mutation are chosen randomly.

More about GAs may be read in [5].

0000000
1111111

0000000
1111111

00000001111111
11111110000000→

Crossover

Individuals
00000000000000
11111111111111

Mutation

11111110000000 → 11111110000001

 Evolutionary Testing: A Case Study 157

2.2 Test Data Generation Problem

We deal with white-box testing, when the source code of the program is known.
Every input variable xi of the program is defined on the set of valid values – the

domain Di. The cartesian product of all domains defines the program domain D:

D = D1×D2×…Dn

A program input x is a point in the domain D.
Test data generation aims to find a point in D such that the control flow executes a

certain statement in the program called the target. In this way we can create a test
suite to get some required coverage type (e.g. statement coverage).

2.3 Testing Problem as an Optimization Problem

2.3.1 Domain Encoding
Every point in D can be encoded as an individual in GA. The encoding process is
dependent on the concrete program input type.

For example let’s take the triangle classification program. It takes as input 3 edge
lengths and determines if they may form a triangle and if so what type of triangle it is.
Let’s limit input numbers to be in [0, 15]; Then every input number can be encoded
with 4 bits. For example, input 3, 4, 5 is encoded as

0011 0100 0101

Fig. 2.3.2. Example of control flow with approximation level values on branches

158 S. Levin and A. Yehudai

2.3.2 Fitness Function
For a given individual we run the program with the input it encodes and follow the
control flow execution. The fitness function should evaluate how close the control
flow gets to the target. There may be several control flow paths to the target. The
fitness function is defined as in the work of McMinn [1].

A critical branch is a branch where the control flow may diverge from a path to the
target so that there is no other path to the target.

The approximation level of a vertex is the number of critical branches from it to
the target minus one.

The control flow example in Figure 2.3.2 the vertex Len<10 has approximation
level 0, because it is the last critical branch before the target. The vertex X<Y is not a
critical branch, because if control flow doesn’t continue via the True outcome of the
decision, then there is another path to the target via the False outcome. The vertex
X>Z has approximation level 1.

If there are several vertices from which control flow diverges from the path to the
target in the same critical branch, then the branch distance is used to determine which
one is better. Branch distance is equal to zero if the value of the condition in the
branch causes to continue the path to the target. Otherwise it is greater than zero and
calculated, depending on the operation in the condition, as follows:

Table 2.3.2. Branch distance calculation

Operation Branch Distance
a>b b-a
a b b-a
a<b a-b
a b a-b
a=b abs(a-b)
a b constant
expr1 or expr2 min(distance(expr1),distance(expr2))
expr1 and expr2 max(distance(expr1),distance(expr2))

For example the following if statement:

if (len < 10) …

If the condition should be true in order to get to the target, and if when we run the
program we detect that it is false, then branch distance is len – 10.

The value of the branch distance is normalized to [0, 1].
The Fitness function is calculated as sum of approximation level (integer part) and

normalized distance (fractional part), so that the branch distance can distinguish
between two vertices only when their approximation level is equal. The goal of the
GA search is to reach fitness equals zero. More about fitness function calculation
variations may be read in [1].

3 Testing System Description

In our testing system we realize branch coverage testing strategy. Branch-coverage
testing requires generating test data to exercise the true and the false outcomes of

 Evolutionary Testing: A Case Study 159

every decision. More about different strategies may be found in [6]. The testing
system must combine static analysis of programs with GA search capabilities. This
was done by combining different existing tools, and tailoring them to the task at hand.

3.1 Program Static Analysis

The program under testing is analyzed with the static analysis tool CodeSurfer [7].
We got academic license for it and enjoyed good support. This tool is programmable
with scheme as a scripting language. Our scheme script automatically generates
command files that are used to follow the execution of the program and to calculate
the fitness value as described in 2.3.2. This is performed once per program under
testing.

Algorithm 3.1: Definition of dfs-cfg-traverse function

Function DFS-CFG-TRAVERSE

Input: vertex, approximation level, outcome
Implicit input: Table of visited critical branches

If the vertex is control point then
 If the vertex is new then
 Add the vertex, level, outcome to the Table
 Increase level
 Else
 If the level is the same as previous
 And outcome is opposite then
 Cancel the vertex entry in the Table
 Else

 Update vertex level, outcome in the Table
 Keep smaller level

Foreach cfg source of the vertex
 DFS-CFG-TRAVERSE source-vertex label level

Algorithm 3.1 shows the definition of dfs-cfg-traverse function. It traverses the
control flow backward. If the vertex is control statement then we take care on
updating approximation level. If traversing gets to unvisited control vertex then the
vertex is added to the Table and approximation level is increased. If traversing gets to
visited vertex then it keeps smaller approximation level. And finally if it gets twice
with opposite outcomes to the same control vertex than it is not critical branch and it
entry is cancelled from the Table. For any vertex it calls recursively the dfs-cfg-
traverse function with the sources of the vertex in control flow graph.

3.2 GA Search

We use the GA implementation from matlab [8]. Each generation it calls the fitness
function with all individuals at once (vectorized fitness function). Our fitness function
runs a Perl script and reads back the fitness values and the statistics.

160 S. Levin and A. Yehudai

The Perl script manages invocations of the program under testing per each
individual. We use GDB [13] to follow the execution of the program. Commands
generated by CodeSurfer are used by GDB to calculate fitness and print statistics.

Fig. 3.2. Testing System description

The Random testing system is different from the above only in random creation of
individuals.

Example 3.2.1: Line 20 of the triangle classification program code

20 if (i+j <= k)

As an example, consider the if statement in example 3.2.1. Its fitness is calculated
with the GDB command shown in example 3.2.2. This code is created by the scheme
script for CodeSurfer. The break point on the line 20 is set and commands cmds_37
are executed automatically when the break point is reached. First the notification that
the flow gets to target 37 and condition value are printed. Then approximation level
equal one is printed. And finally branch distance is calculated and printed.

Example 3.2.2: GDB commands for target on line 20

break 20
commands
cmds_37
end
define cmds_37
printf "TARGET %d %d \n", 37, (i+j <= k)
set $app_level=1
print $app_level
if ((i + j) > (k))
set $val = ((i + j)-(k))
abs $val
set $x37 = $abs_v
else
set $x37 = 0
end
print $x37
cont
end

Fitness values

Individuals

Program Matlab
GA

Fitness
 GDB

Code
Surfer

 Evolutionary Testing: A Case Study 161

4 Experimental Results

For experiments we take simple programs as bubble sort and greatest common
denominator, also programs that are known to be used for test strategies benchmark
([4]) such as triangle classification and string matching, and finally a real program -
UNIX utility uniq.

The goal of all the experiments is to get branch coverage of the program. The only
exception is the uniq program, where the goal is to cover one single target. We don’t
use the whole input domain of the programs, but rather take a part of it sufficient to
satisfy coverage requirement.

GA-based testing system and random testing system differ in the test data
generation process but share the same mechanism to follow program execution. We
compare 5 successive attempts of the GA testing system to cover the program with 5
successive attempts of the Random testing system. We compare the following
parameters: number of invocations of original program under testing and percent of
coverage that is collected as a part of statistics in GA search.

Usually GA search uses 20 individuals, unless mentioned explicitly in the
experiment description. This is why 20 is the minimal number of invocations received
by GA testing system, because it needs to test at least the first generation.

Random testing system generates randomly input for the program. It runs the
program per each target using target specific GDB command file and determines if
the target is covered. Therefore a minimal number of executions of the Random
testing system is as a number of targets. It may be less than number of targets if there
are targets that are covered on the way to other targets.

The testing system may follow the execution to the specific target and record other
targets covered on the way. Therefore the testing system is invoked separately for
every target, except the targets already covered on the way to others.

4.1 Triangle Classification

The Triangle classification program code is taken from work of Schatz et al [3]. The
input of the program is 3 numbers – triangle edge lengths. The program determines if
these edges may form a triangle and if so what type of triangle it is.

The Input domain: 3 integer numbers from [-10, 20]. The program checks that the
input values are not negative, therefore in order to cover this target negative values
are needed.

The most difficult target was the condition to satisfy an isosceles triangle.

Table 4.1. Triangle classification program testing

Testing 1 2 3 4 5 Avrg
GA 2040 3820 1360 1080 2360 2132
Random 18880 19520 22240 14240 24000 19776

162 S. Levin and A. Yehudai

Both testing systems get 100% coverage. Five successive attempt of GA testing
system requires on average 2132 invocations while random testing requires 19776
invocations (about 9 times more).

4.2 Bubble Sort

Given a list of integers it returns a sorted list.
Both testing systems get 100% coverage with minimal number of invocations: 20

for GA testing and 3 for Random testing (as the number of targets in the program).

4.3 Greatest Common Denominator

The program takes as input 2 integers from [1, 100] and returns the greatest common
denominator. Both testing systems get 100% coverage with minimal number of
invocations: 20 for GA testing and 3 for Random testing (as the number of targets in
the program).

4.4 String Matching

The string matching program is taken from work of Rad [4], where he used it not for
evolutionary testing. Given a string and a pattern it returns the start position of the
pattern in the string. String is over the alphabet a..z. It checks different boundary
conditions - when the length of the string or the pattern is larger than some maximal
length, when the length is 0, when the pattern is longer than the string.

Coding of input domain: every individual encodes the length of the string followed
by numbers representing the string characters, and then similarly for the pattern. We
enable variety in length in order to get coverage also for boundary conditions.

4.4.1 Small String and Pattern Lengths
The first experiment is for an input string with maximal length equals 8 and a pattern
with maximal length equals 3. Both systems get 100% coverage. The GA system
requires on average 54 invocations while the random system requires on average 220
(4 times more) (See Figure 4.4.1 in the next page).

Table 4.4.1. String matching testing with small length

Testing 1 2 3 4 5 6 7 8 9 10 Avrg
GA 40 60 40 40 140 40 40 40 60 40 54
Random 150 330 156 366 126 210 162 492 114 90 220

4.4.2 Large String and Pattern Lengths
The second experiment is for an input string with length 25 and a pattern with length
10. Both systems get 100% coverage. GA system requires in average 178 invocations
when random requires in average 2680 (15 times more).

Increasing string and pattern length by a factor of 3 resulted in increased number of
invocation by a factor of 3 for GA testing, and a factor of 12 for random testing. This
indicates that GA scales much better than Random testing.

 Evolutionary Testing: A Case Study 163

Fig. 4.4.1. The number of invocations for GA testing vs. Random testing, for the string matching
program with short strings and patterns

Table 4.4.2 String matching testing with larger length

Testing 1 2 3 4 5 6 7 8 9 10 Avrg
GA 180 100 200 160 260 300 120 180 120 160 178
Random 4590 5040 2766 654 2070 738 3294 2442 2748 2460 2680

4.5 Uniq UNIX Utility

Uniq is a UNIX utility which, when fed a text file, outputs the file with adjacent
identical lines collapsed to one [14].

The goal of the experiment is to find input with identical adjacent lines in order to
satisfy the condition of collapsing lines, i.e. it searches input data for one specific
target. We restrict the input domain to files with two lines only.

Coding of input domain: every individual is a vector of numbers. Each number is
translated to a character. The first half of the vector forms the first line. The second
half of the vector forms the second line.

4.5.1 Binary Strings
In this experiment the numbers in the vector are binary. For example individual:
10101110010100110001 is translated to the file with two lines:

1010111001
0100110001

164 S. Levin and A. Yehudai

One experiment is for bit vector of length 20. The difference between GA testing
system and Random testing system is not significant, GA averages 324 while Random
averages 612.

Table 4.5.1.1. Uniq testing with bit vector of length 20

Testing 1 2 3 4 5 Avrg
GA 320 160 180 380 580 324
Random 540 640 20 1160 700 612

Another experiment is for bit vector of length 40. GA population has 40

individuals. Both testing system reaches the target in all 5 successive runs. GA testing
system requires 1424 invocations in average while the 4 best runs of Random require
240000 (the average is 478288). The difference between 1424 and 240000 is about
168 times.

Table 4.5.1.2. Uniq testing with bit vector of length 40

Testing 1 2 3 4 5 Avrg
GA 1520 1240 520 3200 640 1424
Random 223440 517600 196240 22720 1431440 478288

4.5.2 Alphabet String
In this experiment the numbers in the vector are integers. They are mapped to [0, 25]
interval and the resulting character code is the code of ‘a’ plus the mapped number.
GA population has 50 individuals. GA testing system requires on average 14900
invocations. Random testing system didn’t find a solution in any attempt with
1000000 invocations.

Table 4.5.2. Uniq testing with alphabet string of length 20

Testing 1 2 3 4 5 Avrg
GA 15600 7200 16050 12850 22800 14900
Random - - - - - -

5 Conclusions

Our work aims to evaluate the applicability of GA testing to various types of
software. The initial results presented in this paper are encouraging. Our experiments
show that for simple programs both GA-based testing system and Random testing
system work fine, but as the complexity of the program or the complexity of input
domain grows, GA-based testing system significantly outperforms Random testing.
Both testing systems are based on randomness; therefore variance in performance is
understandable, as in table 4.5.1.1 attempt number 3. But the average result is
demonstrative.

 Evolutionary Testing: A Case Study 165

GA testing requires some preparatory work. To get the testing system to work on
new example we need to write a script to translate individual genes of GA search to
program input. This means that GA testing is worthwhile if the improvement over
Random testing is significant. The GA system as presented has one important
limitation: The conditions in control flow statements must be side-effect free.

We intend to continue to examine more types of programs, with the aim to better
classify programs for which GA testing is applicable and superior to other techniques.

References

1. P. McMinn. Search-based software testing: A survey. Software Testing, Verification and
Reliability, 14(2): 105-156, 2004/6.

2. R. Ferguson and B. Korel. The chaining approach for software test data generation. ACM
Transactions on Software Engineering and Methodology, 5(1): 63-86, 1996

3. G. McGraw, C. Michael, and M. Schatz. Generating software test data by evolution. IEEE
Transactions on Software Engineering, 27(12):1085-1110, 2001.

4. Soroush Karimi Rad. Can structural test adequacy criteria be used to predict the quality of
generated invariants? MSc thesis, University of Antwerp, 2005

5. David E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning
Kluwer Academic Publishers, Boston, MA, 1989.

6. Mark Roper: Software Testing McGraw-Hill, 1994
7. Codesurfer, http:// www.grammatech.com/products/codesurfer, last visited July 2006
8. http://www.mathtools.net/MATLAB/Genetic_algorithms, last visited July 2006
9. H. Sthamer, J. Wegener and A. Baresel: Using Evolutionary Testing to improve Efficiency

and Quality in Software Testing. In Proceedings of the 2nd Asia-Pacific Conference on
Software Testing Analysis and Review (AsiaSTAR), July 2002. 22-24th July.

10. S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Karapoulios.
Application of genetic algorithms to software testing (Application des algorithmes
g_en_etiques au test des logiciels). In 5th International Conference on Software
Engineering and its Applications, pages 625-636, Toulouse, France, 1992.

11. J. Wegener, K. Buhr, and H. Pohlheim: Automatic test data generation for structural
testing of embedded software systems by evolutionary testing. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2002), pages 1233-1240,
New York, USA, 2002. Morgan Kaufmann.

12. J. Wegener, A. Baresel, and H. Sthamer: Evolutionary test environment for automatic
structural testing. Information and Software Technology, 43(14):841-854, 2001

13. GDB, The GNU Source-Level Debugger
http://www.fismat.umich.mx/mn1/gdb/ gdb_toc.html, last visited July 2006

14. Wikipedia, Uniq http://en.wikipedia.org/wiki/Uniq, last visited November 2006

A Race-Detection and Flipping Algorithm for

Automated Testing of Multi-threaded Programs

Koushik Sen1 and Gul Agha2

1 University of California Berkeley, USA
ksen@cs.berkeley.edu

2 University of Illinois at Urbana-Champaign, USA
agha@cs.uiuc.edu

Abstract. Testing concurrent programs that accept data inputs is no-
toriously hard because, besides the large number of possible data inputs,
nondeterminism results in an exponentially large number of interleavings
of concurrent events. In order to efficiently test shared-memory multi-
threaded programs, we develop an algorithm based on race-detection
and flipping and illustrate how it can be combined with concolic execu-
tion (a simultaneous symbolic and concrete execution method) to test
multi-threaded programs with data inputs. The goal of our algorithm
is to minimize redundant executions while ensuring that all reachable
statements in a program are executed. To achieve this, our algorithm
explores all distinct causal structures of a multi-threaded program (i.e.,
the partial order among events generated during an execution). Because
our algorithm is based on race-detection, it enables us to report po-
tential data races and deadlocks. We have implemented our algorithm
in a tool called jCUTE. We describe the results of applying jCUTE to
real-world multi-threaded Java applications and libraries. In particular,
we discovered several undocumented potential concurrency-related bugs
in the widely used Java collection framework distributed with the Sun
Microsystems’ JDK 1.4.

1 Introduction

Testing programs is generally hard because of the large number of possible inputs
to a program. Testing concurrent programs is notoriously harder because of
the exponentially large number of possible interleavings of concurrent events.
Many of these interleavings share the same causal structure (also called the
partial order), and thus are equivalent with respect to finding bugs in a given
program. Techniques for avoiding such redundant executions are called partial
order reduction [20,11,5].

A number of approaches [6,4,2,1] to testing concurrent programs assume that
the data inputs are from a small finite domain. These approaches rely on ex-
haustively executing the program for all possible inputs and perform a partial
order reduction to reduce the search space. The problem with these approaches
is that it is hard to scale them – the input set is often too large.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 166–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Race-Detection and Flipping Algorithm 167

A second approach is to execute a program symbolically in a customized vir-
tual machine which supports partial order reduction [8,21]. This requires check-
ing satisfiability of complex constraints (corresponding to every branch point
in a program). Unfortunately, checking such satisfiability may be undecidable
or computationally intractable. Moreover, in concurrent programs, partial order
reduction for symbolic execution requires computing the dependency relations
between memory accesses in a program. Because it involves alias analysis, such
a computation is often conservative resulting in extra dependencies. For these
reasons, large numbers of unreachable branches may be explored, often causing
many warnings for bugs that could never occur in an actual execution.

Our approach is to extend concolic testing, which combines concrete and sym-
bolic execution by using one to guide the other [15,7,13]. The idea behind concolic
testing is to use symbolic execution to generate inputs that direct a program to
alternate paths, and to use the concrete execution to guide the symbolic execu-
tion along a concrete path, and replace symbolic values (variables) by concrete
values if the symbolic state is too complex to be handled by a constraint solver.

To systematically test multithreaded programs, we propose a new algorithm
called the race-detection and flipping algorithm and combine this algorithm
with concolic testing. The algorithm works as follows. For a given concrete
execution, at runtime, we determine the partial order relation or the exact race
conditions (both data race and lock race) between the various events in the
execution path. Subsequently, we systematically re-order or permute the events
involved in these races by generating new thread schedules as well as gener-
ate new test inputs. This way we explore one representative from each partial
order. The result is an efficient testing algorithm for concurrent programs which,
at the cost of missing some potential bugs, avoids the problem of false
warnings.

We have implemented the algorithm in a tool, called jCUTE, for testing Java
programs.1 Apart from detecting assertion violations and uncaught exceptions,
jCUTE reports all data race conditions and deadlock states encountered during
the process of testing.

We provide some case studies to illustrate the utility of our approach. In
our first case study, we tested the thread-safe Java Collection framework pro-
vided with the Sun Microsystems’ Java 1.4. Surprisingly, we discovered several
previously unknown data races, deadlocks, uncaught exceptions, and an infi-
nite loop in this widely used library. All of them are potential bugs related to
multithreaded execution. In our second case study, we tested several small to
medium sized concurrent Java programs used as case studies for evaluating
NASA’s Java PathFinder and KSU’s Bandera tool. In all those programs, our
tool discovered bugs which had previously been found by model-checking manu-
ally abstracted versions of the programs–of course, in our case without abstract-
ing the program. In the last two case studies, we detected well-known security
attacks in the concurrent implementation of the Needham-Schroeder and the
TMN protocols.

1 Available at http://osl.cs.uiuc.edu/~ksen/cute/

http://osl.cs.uiuc.edu/~ksen/cute/

168 K. Sen and G. Agha

The contributions of this paper are as follows:

– We describe a new algorithm, called race-detection and flipping algorithm,
for efficiently exploring all non-equivalent executions of a shared-memory
multi-threaded program with no data input.

– We apply a tool based on our method to real world case studies. The results
show that our method can efficiently detect data races, deadlocks and other
bugs in a multi-threaded program.

Due to space limitations, we skip the description of the concolic testing and the
details about how to combine concolic testing and the race-detection and flipping
algorithm. The description of concolic testing can be found in [7,15] and the details
of the combination can be found in [12].

The outline of the rest of the paper is as follows. In Section 2, we use an
example to give an overview of the race-detection and flipping algorithm com-
bined with concolic testing. In Section 3, we describe the execution model that
we assume for the purpose of describing our the race-detection and flipping al-
gorithm. In Section 4, we describe the race-detection and flipping algorithm.
Section 5 describes four case studies. In Section 6, we discuss related work.

2 Overview of Our Approach

In concolic testing our goal is to generate data inputs and schedules that would
exercise all feasible executions paths of a program. Our algorithm for concolic
testing uses concrete values as well as symbolic values for the inputs, and ex-
ecutes a program both concretely and symbolically. The symbolic execution is
similar to the traditional symbolic execution [9], except that jCUTE follows the
path that the concrete execution takes. During the course of the execution, it
collects the constraints over the symbolic values at each branch point (i.e., the
symbolic constraints). At the end of the execution, the algorithm has computed
a sequence of symbolic constraints corresponding to each branch point. We call
the conjunction of these constraints a path constraint. Observe that all input
values that satisfy a given path constraint will explore the same execution path,
provided that we follow the same thread schedule.

Apart from collecting symbolic constraints, the algorithm also computes the
race condition between various events in the execution of a program, where,
informally, an event represents the execution of a statement in the program by
a thread. We say that two events are in a race if the following three conditions
hold: they are events belonging to different threads, they access (i.e. read, write,
lock, or unlock) the same memory location without holding a common lock,
and the order of the happening of the events can be permuted by changing the
schedule of the threads. The race conditions are computed by analyzing the
concrete execution of the program with the help of dynamic vector clocks for
multithreaded programs (dynamic vector clock algorithm was introduced in [17]
for predictive monitoring of multi-threaded programs.)

The algorithm first generates a random input and a schedule which specifies
the order of the execution of threads. Then the algorithm does the following in

A Race-Detection and Flipping Algorithm 169

a loop: it executes the code with the generated input and the schedule. At the
same time the algorithm computes the race conditions between various events as
well as the symbolic constraints. It backtracks and generates a new schedule or a
new input and executes the program again. It continues until it has explored all
possible distinct execution paths using a depth-first search strategy. The choice
of new inputs and schedules is made in one of the following two ways:

1. The algorithm picks a constraint from the symbolic constraints that were
collected along the execution path and negates the constraint to define a
new path constraint. The algorithm then finds, if possible, some concrete
values that satisfy the new path constraint. These values are used as input
for the next execution.

2. The algorithm picks two events which are in a race and generates a new
schedule that at the point where the first event happened, the execution
of the thread involved in the first event is postponed or delayed as much
as possible. This ensures that the events involved in the race get flipped or
re-ordered when the program is executed with the new schedule. The new
schedule is used for the next execution.

We illustrate how jCUTE performs concolic testing along with race-detection and
flipping using the sample program P in Figure 1. The program has two threads
t1 and t2, a shared integer variable x, and an integer variable z which receives
an input from the external environment at the beginning of the program. Each
statement in the program is labeled. The program reaches the ERROR statement
in thread t2 if the input to the program is 1 (i.e., z gets the value 1) and if the
program executes the statements in the following order: (t2, 1)(t1, 1)(t2, 2)(t2, 3),
where each event, represented by a tuple of the form (t, l), in the sequence denotes
that the thread t executes the statement labeled l.

x is a shared variable

z = input();

Thread t1

1: x = 3;

Thread t2

1: x = 2;

2: if (2*z + 1 == x)

3: ERROR;

Fig. 1. A Simple Shared-Memory Multi-Threaded Program

jCUTE first generates a random input for z and executes P with a default
schedule. Without loss of generality, the default schedule always picks the thread
which is enabled and which has the lowest index. Thus, the first execution of P
is (t1, 1)(t2, 1)(t2, 2). Let z0 be the symbolic value of z at the beginning of the

170 K. Sen and G. Agha

execution. jCUTE collects the constraints from the predicates of the branches
executed in this path. For this execution, jCUTE generates the path constraint
〈2 ∗ z0 + 1! = 2〉. jCUTE also decides that there is a race condition between the
first and the second event because both the events access the same variable x
in different threads without holding a common lock and one of the accesses is a
write of x.

Following the depth-first search strategy, jCUTE picks the only constraint
2∗z0 +1! = 2, negates it, and tries to solve the negated constraint 2∗z0 +1 = 2.
This has no solution. Therefore, jCUTE backtracks and generates a schedule such
that the next execution becomes (t2, 1)(t2, 2)(t1, 1) (here the thread involved
in the first event of the race in the previous execution is delayed as much as
possible). This execution re-orders the events involved in the race in the previous
execution.

During the above execution, jCUTE generates the path constraint 〈2 ∗ z0 +
1! = 2〉 and computes that there is a race between the second and the third
events. Since the negated constraint 2 ∗ z0 + 1 = 2 cannot be solved, jCUTE
backtracks and generates a schedule such that the next execution becomes
(t2, 1)(t1, 1)(t2, 2). This execution re-orders the events involved in the race in
the previous execution.

In the above execution, jCUTE generates the path constraint 〈2∗z0+1! = 3〉.
jCUTE solves the negated constraint 2 ∗ z0 + 1 = 3 to obtain z0 = 1. In the
next execution, it follows the same schedule as the previous execution. However,
jCUTE starts the execution with the input variable z set to 1 which is the value
of z that jCUTE computed by solving the constraint. The resultant execution
becomes (t2, 1)(t1, 1)(t2, 2)(t2, 3) which hits the ERROR statement of the program.

3 Execution Model

We assume that programs under test are written in a shared-memory multi-
threaded imperative programming language such as Java. Such a program con-
sists of a finite set of threads, which communicate by reading or writing shared
variables, or by acquiring or releasing locks. Each thread executes a sequence
of deterministic statements. Without loss of generality, we assume that the ex-
ecution of a statement by a thread can perform at most one shared-memory
operation–this can be achieved by splitting complex statements into a sequence
of simple statements. We also assume that the execution of each thread
terminates.2

A program supports mutual exclusion by using locks.3 A thread suspends
its execution if it tries to acquire a lock which is already acquired by another

2 In practice, this can be enforced by limiting the number of execution steps.
3 Due to space limit, we do not describe how to handle other synchronization con-

structs. In our implementation, we handle all synchronization primitives of Java. We
express wait as a sequence of lock release and acquire actions. A join operation on
a parent thread is sequentially related to the termination event of the child thread.
Handling of message-passing primitives were discussed in [13].

A Race-Detection and Flipping Algorithm 171

thread. Normal execution of the thread resumes when the lock is released by
the other thread. We assume that the acquire and release of locks take place
in a nested fashion as in Java. Locks are assumed to be re-entrant : if a thread
already holds a lock on a shared variable, then an acquire of the lock on the
same variable by the same thread does not deadlock. When the execution of a
thread terminates, all the locks held by the thread are released. For technical
simplicity, we assume that the set of memory locations that can be locked or
unlocked is disjoint from the set of memory locations that can be read or written.
We assume a sequentially consistent memory model.

We fix a multi-threaded program P . The execution of each statement in P is
an event. Note that a statement may involve access to a shared memory location.
We represent an event as (t, l, a), where l is the label of the statement executed
by thread t and a is the type of shared memory access in the statement. If the
execution of the statement accesses a shared memory location, then a = r if the
access is a read, a = w if the access is a write, a = l if the access is a lock, and
a = u if the access is an unlock; otherwise, a = ⊥. If the execution of a fork
statement labeled l by a thread t creates a new thread t′, then we get two events:
(t, l, ⊥) representing the fork event on the thread t and (t′, ⊥, ⊥) representing the
creation of the new thread. Thus the event (t′, ⊥, ⊥) represents the first event
of any newly created thread t′. We use the term access to represent a read, a
write, a lock, or an unlock of a shared memory location. We use the term update
to represent a write, a lock, or an unlock of a shared memory location. We call
an event

– a fork event, if the event is of the form (t, l, ⊥) and l is the label of a fork
statement,

– a new thread event, if the event is of the form (t, ⊥, ⊥),
– a read, a write, a lock, an unlock, an access, or an update event, if the

event reads, writes, locks, unlocks, accesses, or updates a memory location,
respectively,

– an internal event, if the event is not a fork event, a new thread event, or an
access event.

An execution of P can be seen as a sequence of events. We call such a sequence
an execution path. Note that the execution of P on several inputs may result in
the same execution path. Let Ex(P) be the set of all feasible execution paths
exhibited by the program P on all possible inputs and all possible choices by the
scheduler.

If we view each event in an execution path as a node, then Ex(P) can be seen
as a tree. Such a tree is called the computation tree of a program. The goal of our
testing method for concurrent programs is to systematically explore a minimum
possible subset of the execution paths of Ex(P) such that if a statement of P
is reachable by a thread for some input and some schedule, the subset must
contain an execution path in which that statement is executed. To achieve this,
we abstract an execution path in terms of a partial order relation called causal
relation. Any partial order represents a set of equivalent execution paths. In our
testing algorithm, the goal is to exactly explore one execution path corresponding

172 K. Sen and G. Agha

to each partial order. However, in the actual algorithm, we are able to guarantee
that at least one—though not at most one—execution path corresponding to
each partial order is explored if a program has no data input. We next define
the various binary relations that we use to define a partial order.

Fig. 2. Time increases from left to right. e3 ‖ e10, e9 � e4, e10 ��e5, e3 � e12, e1 ��e10,
e1 � e10, e1 � e12, e1 � e9, e3 � e4, e3 � e12, etc.

In an execution path τ ∈ Ex(P), any two events e = (ti, li, ai) and e′ =
(tj , lj , aj) appearing in τ are sequentially related (denoted by e � e′) iff:

1. e = e′, or
2. ti = tj and e appears before e′ in τ , or
3. ti �= tj , ti created the thread tj , and e appears before e′′ in τ , where e′′ is

the fork event on ti creating the thread tj , or
4. there exists an event e′′ in τ such that e � e′′ and e′′ � e′.

Thus � is a partial order relation. We say e � e′ iff e � e′ and e′ � e.
In an execution path τ ∈ Ex(P), any two events e = (ti, li, ai) and e′ =

(tj , lj , aj) appearing in τ are shared-memory access precedence related (denoted
by e <m e′) iff:

1. e appears before e′ in τ , and
2. e and e′ both access the same memory location m, and
3. one of them is an update of m.

In the above definition, it is worth remembering that the memory locations that
can be locked or unlocked are disjoint from the memory locations that can be
read or written. Therefore, if e <m e′ and e (or e′) is a lock or unlock of m, then
the e′ (or e) is also a lock or unlock of m. Similarly, if e <m e′ and e (or e′) is a
write of m, then the e′ (or e) is a read or write of m.

Given the definition of the sequential relation and the shared-memory access
precedence relation, we can define another relation, called causal relation, as
follows. In an execution path τ ∈ Ex(P), any two events e = (ti, li, ai) and
e′ = (tj , lj, aj) appearing in τ are causally related (denoted by e � e′) iff:

1. e � e′, or
2. e <m e′ for some shared-memory location m, or
3. there exists e′′ such that e � e′′ and e′′ � e′.

A Race-Detection and Flipping Algorithm 173

The causal relation is a partial-order relation. We say that e ‖ e′ iff e �� e′ and
e′ �� e. If e � e′, then we say e causally precedes e′.

We next define a relation �, called race relation, that captures the race
condition between two events. We say that any two events e = (ti, li, ai) and
e′ = (tj , lj, aj) are race related (denoted by e � e′) iff

1. e � e′,
2. if e is a lock event and e′′ is the corresponding unlock event, then e′′ <m e′

and there exists no e1 such that e1 �= e′′, e1 �= e′, e′′ � e1, and e1 � e′, and
3. if e is a read or a write event, then e <m e′ and there exists no e1 such that

e1 �= e, e1 �= e′, e � e1, and e1 � e′.

If two events in an execution path are related by �, then there exists an imme-
diate race (data race or lock race) between the two events. Therefore, we call �

a race relation.
Figure 2 gives an example of the various relations defined above.
Given two execution paths τ and τ ′ in Ex(P), we say that τ and τ ′ are causally

equivalent, denoted by τ ≡� τ ′, iff τ and τ ′ have the same set of events and they
are linearizations of the same � relation. We use [τ]≡� to denote the set of all
executions in Ex that are equivalent to τ .

We define a representative set of executions REx ⊆ Ex as a set that contains
exactly one candidate from each equivalence class [τ]≡� for all τ ∈ Ex. Formally,
REx is a set such that following properties hold:

1. REx ⊆ Ex,
2. Ex =

⋃
τ∈REx[τ]≡� , and

3. for all τ, τ ′ ∈ REx, it is the case that τ �≡� τ ′.

The following result shows that a systematic and automatic exploration of
each element in REx is sufficient for testing.

Proposition 1. If a statement is reachable in a program P for some input and
schedule, then there exists a τ ∈ REx such that the statement is executed in τ .

The proof of this proposition is as follows. If a statement is reachable then there
exists an execution τ in Ex such that the execution τ executes the statement.
By the definition of ≡�, any execution in [τ]≡� executes the statement. Hence,
the execution in REx that is equivalent to τ executes the statement.

The race-detection and flipping algorithm tries to explore all paths in a su-
perset of REx(P) and a small subset of Ex(P). A key observation that guides our
testing algorithm is that if two events are sequentially related then their happen-
ing order cannot be permuted by changing the schedule of the threads. However,
if the two events are race related, then their happening order can be permuted
by modifying the schedule. In our algorithm , we systematically permute or flip
the race relation between various events by generating new schedules one by one.

174 K. Sen and G. Agha

4 The Race-Detection and Flipping Algorithm

We next describe the race-detection and flipping algorithm. For simplicity of ex-
position, we assume that a program under test has no data input. As illustrated
in Section 2, a combination of race-detection and flipping algorithm and con-
colic testing can be used to systematically test a shared-memory multi-threaded
program with data inputs. In the interest of space, this paper does not discuss
the details of the combined method–the details can be found in [12].

global var τ = ε; // the empty sequence

//input: P is the program to test
test program(P)

while testing not completed
execute program(P)

execute program(P)
execute prefix(P, τ);
while there is an enabled thread

execute the next statement of the lowest indexed enabled thread in P
to generate the event e;

race(τ) = false;
postponed(τ) = ∅;
append e to τ ;
if ∃e′ ∈ τ such that e′

� e
let τ = τ1e′τ2 in race(τ1) = true;

// end of the while loop
if there is an active thread

print ‘‘Error: found deadlock’’;
generate next schedule();

// modifies τ
generate next schedule()

if ∃e such that τ == τ1eτ2 and backtrackable(τ1) and
there is no e′ such that τ == τ ′

1e′τ ′
2 and |τ1| < |τ ′

1| and backtrackable(τ ′
1)

race(τ1) = false;
let (t, ,) = e in add t to postponed(τ1);
let t = smallest indexed thread in enabled(τ1)\ postponed(τ1) in τ = τ1(t, ,);

else
testing completed;

backtrackable(τ1) =
race(τ1) ==true and |enabled(τ1)\postponed(τ1)| > 1

Fig. 3. The Race-Detection and Flipping Algorithm

The race-detection and flipping algorithm is given in Figure 3. Recall that
Ex(P) is the set of all feasible execution paths that can be exhibited by the
program P . Similarly, REx(P) is a set that contains exactly one candidate from
each equivalence class of feasible execution paths of P . test program(P) repeat-
edly executes the program P with different schedules until all paths in a REx(P)
have been explored. Given two sequences of events τ and τ ′, we let ττ ′ denote
the concatenation of the two sequences. Similarly, given a sequence of events τ

A Race-Detection and Flipping Algorithm 175

and an event e, we let τe to denote the concatenation of the sequence and the
event. Let ε be the empty sequence. A sequence of events is called a prefix, if
it is the prefix of a feasible execution path. The global variable τ keeps track
of the execution path for each execution of P . At the end of each execution,
τ is appropriately truncated so that a depth-first search of the computation
tree takes place. execute prefix (P, τ) executes the program from the beginning
until the sequence of events generated by the execution is equal to the prefix τ .
Since an execution path is solely determined by the sequence of threads that are
executed in the path, from now onwards we will ignore the second and the third
components of a tuple representing an event. Thus (t, ,) represents an event on
the thread t. With every prefix τ , we associate a set, denoted by postponed(τ).
Moreover, with every prefix τ , we associate a boolean flag, denoted by race(τ).
enabled(τ) returns the set of threads that are enabled after executing the prefix
τ . enabled(τ)\postponed(τ) represents the set of threads that are enabled but
not postponed after executing τ .

In each execution of P during the testing process, P is first partly executed
so that it follows the prefix τ computed in the previous execution. Then P is
executed with the default schedule, where the lowest indexed enabled thread is
always chosen. If τ = τ ′e before the start of an execution, then the execution
path and the previous execution path has the same prefix τ ′. In an execution
path τ , for any prefix τ ′ of τ , we set race(τ ′) to true, if there exist e, τ1, e

′, and
τ2 such that τ = τ ′eτ1e

′τ2 and e � e′. The algorithm computes the � relation at
runtime using the dynamic vector clock algorithm [16,12]. We omit the vector
clock update procedures in the pseudo-code of the race-detection and flipping
algorithm to keep the description simple. Setting race(τ ′) to true flags that in
a subsequent execution, we must postpone the execution of e after the prefix τ ′

so that we may explore a possibly non-equivalent execution path. At the end of
an execution, if τ1 is the longest prefix of the current execution path τ such that
race(τ1) is set to true and |enabled(τ1)\postponed(τ1)| > 1, we generate a new
schedule by truncating τ to τ1e, where e is an event of a thread t that has not
been scheduled after τ1 in any previous execution.

The following result holds for the race-detection and flipping algorithm.

Theorem 1. If Ex′(P) is the set of the execution paths that are explored by
the race-detection and flipping algorithm, then there is a set REx(P) such that
REx(P) ⊆ Ex′(P) ⊆ Ex(P).

The proof of the above theorem can be found in [12].

5 Case Studies

For Java, we have implemented the combination of the race-detection and the
flipping algorithm and concolic testing. The tool is called jCUTE. The details
of the implementation can be found in the tool paper [14].

We use two sets of case studies to illustrate the effectiveness of jCUTE in
finding potential bugs. The experiments were run on a 2.0 GHz Pentium M
processor laptop with 1 GB RAM running Windows XP.

176 K. Sen and G. Agha

5.1 Java 1.4 Collection Library

We tested the thread-safe Collection framework implemented as part of the
java.util package of the standard Java library provided by Sun Microsystems.
A number of data structures provided by the package java.util are claimed as
thread-safe in the Java API documentation. This implies that the library should
provide the ability to safely manipulate multiple objects of these data structures
simultaneously in multiple threads. No explicit locking of the objects should be
required to safely manipulate the objects. More specifically, multiple invocation
of methods on the objects of these data structures by multiple threads must be
equivalent to a sequence of serial invocation of the same methods on the same
objects by a single thread.

We chose this library as a case study primarily to evaluate the effectiveness of
our jCUTE tool. As Sun Microsystems’ Java is widely used, we did not expect
to find potential bugs. We found several previously undocumented data races,
deadlocks, uncaught exceptions, and an infinite loop in the library. Note that,
although the number of potential bugs is high, these bugs are all caused by a
couple of problematic design patterns used in the implementation.

Experimental Setup. Thejava.utilprovides a set of classes implementing thread-
safe Collection data structures. A few of them are ArrayList, LinkedList,
Vector, HashSet, LinkedHashSet, TreeSet, HashMap, TreeMap, etc. The Vector
class is synchronized by implementation. For the other classes, one needs
to call the static functions such as Collections.synchronizedList,
Collections.synchronizedSet, etc., to get a synchronized or thread-safe object
backed by a non-synchronized object of the class. To setup the testing process we
wrote a multithreaded test driver for each such thread-safe class. The test driver
starts by creating two empty objects of the class. The test driver also creates and
starts a set of threads,where each thread executes a differentmethod of either of the
two objects concurrently. The invocation of the methods strictly follows the con-
tract provided in the Java API documentation. We created two objects because
some of the methods, such as containsAll, takes as an argument an object of the
same type. For such methods, we call the method on one object and pass the other
object as an argument. Note that more sophisticated test drivers can be written.

The arguments to the different methods are provided as input to the program.
If a class is thread-safe, then there should be no error if the test-driver is executed
with any possible interleaving of the threads and any input. However, jCUTE
discovered data races, deadlocks, uncaught exceptions, and an infinite loop in
these classes. Note that in each case jCUTE found no such error if methods are
invoked in a single thread. As such the bugs detected in the Java Collection
library are concurrency related.

The summary of the results is given in the Table 1. Here We present a simple
scenario under which the infinite loop happens. The test driver first creates two
synchronized linked lists by calling
List l1 = Collections.synchronizedList(new LinkedList());
List l2 = Collections.synchronizedList(new LinkedList());
l1.add(null);
l2.add(null);

A Race-Detection and Flipping Algorithm 177

The test driver then concurrently allows a new thread to invoke l1.clear()
and another new thread to invoke l2.containsAll(l1). jCUTE discovered an
interleaving of the two threads that resulted in an infinite loop. However, the
program never goes into infinite loop if the methods are invoked in any order
by a single thread. jCUTE also provided a trace of the buggy execution. This
helped us to detect the cause of the bug. The cause of the bug is as follows. The
method containsAll holds the lock on l2 throughout its execution. However,
it acquires the lock on l1 whenever it calls a method of l1. The method clear
always holds the lock on l1. In the trace, we found that the first thread executes
the statements
modCount++;
header.next = header.previous = header;

of the method l1.clear() and then there is a context switch before the ex-
ecution of the statement size=0; by the first thread. The other thread starts
executing the method containsAll by initializing an iterator on l1 without
holding a lock on l1. Since the field size of l1 is not set to 0, the iterator
assumes that l1 still has one element. The iterator consumes the element and
increments the field nextIndex to 1. Then a context switch occurs and the first
thread sets size of l1 to 0 and completes its execution. Then the other thread
starts looping over the iterator. In each iteration nextIndex is incremented. The
iteration continues if the method hasNext of the iterator returns true. Unfor-
tunately, the method hasNext performs the check nextIndex != size; rather
than checking nextIndex < size;. Since size is 0 and nextIndex is greater
than 0, hasNext always returns true and hence the loop never terminates. Note
that this infinite loop should not be confused with the infinite loop in the fol-
lowing wrongly coded sequential program commonly found in the literature.
List l = new LinkedList(); l.add(l); System.out.println(l);

Table 1. Results for testing synchronized Collection classes of JDK 1.4

Name Run time # of # of # of Functions # of data races/deadlocks/
in seconds Paths Threads Tested infinite loops/exceptions

Vector 5519 20000 5 16 1/9/0/2
ArrayList 6811 20000 5 16 3/9/0/3
LinkedList 4401 11523 5 15 3/3/1/1
LinkedHashSet 7303 20000 5 20 3/9/0/2
TreeSet 7333 20000 5 26 4/9/0/2
HashSet 7449 20000 5 20 19/9/0/2

5.2 NASA’s Java Pathfinder’s Case Studies

In [10], several case studies have been carried out using Java PathFinder and
Bandera. These case studies involve several small to medium-sized multithreaded
Java programs; thus they provide a good suite to evaluate jCUTE. The pro-
grams include RemoteAgent, a Java version of a component of an embedded

178 K. Sen and G. Agha

spacecraft-control application, Pipeline, a framework for implementing multi-
threaded staged calculations, RWVSN, Doug Lea’s framework for reader writer
synchronization, DEOS, a Java version of the scheduler from a real-time ex-
ecutive for avionics systems, BoundedBuffer, a Java implementation of multi-
threaded bounded buffer, NestedMonitor, a semaphore based implementation of
bounded buffer, and ReplicatedWorkers, a parameterizable job scheduler. Details
about these programs can be found in [10]. We also considered a distributed sort-
ing implementation used in [8]. This implementation involves both concurrency
and complex data inputs.

We used jCUTE to test these programs. Since most of these programs are
designed to run in an infinite loop, we bounded our search to a finite depth.
jCUTE discovered known concurrency related errors in RemoteAgent, DEOS,
BoundedBuffer, NestedMonitor, and the distributed sorting implementation and
seeded bugs in Pipeline, RWVSN, and ReplicatedWorkers. The summary of the
results is given in the Table 2. In each case, we stopped at the first error. Note
the although the running time of our experiments is many times smaller than
that in [10,8], we are also using a much faster machine.

It is worth mentioning that we tested the un-abstracted version of these pro-
grams rather than requiring a programmer to manually provide abstract inter-
pretations as in [10]. This is possible with jCUTE because jCUTE tries to explore
distinct paths of a program rather than exploring distinct states. Obviously, this
means that we cannot prove a program correct if the program has infinite length
paths. Java PathFinder and Bandera can verify a program in such cases if the
state space of the abstracted program is finite.

Table 2. Java PathFinder’s Case Studies (un-abstracted)

Name Run time # of # of Lines # of Bugs Found
in seconds Paths Threads of Code data races/deadlocks/

assertions/exceptions
BoundedBuffer 11.41 43 9 127 0/1/0/0
NestedMonitor 0.46 2 3 214 0/1/0/0
Pipeline 0.70 3 5 103 1/0/1/0
RemoteAgent 0.45 2 3 55 1/1/0/0
RWVSN 2.19 8 5 590 1/0/1/0
ReplicatedWorkers 0.34 1 5 954 0/0/1/0
DEOS 35.23 111 6 1443 0/0/1/0

6 Related Work

Bruening [1] first proposed a technique for dynamic partial order reduction, called
ExitBlock-RW algorithm, to systematically test multithreaded programs. They
used two sets, delayed set and enabled set, similar to the sets postponed and
Tenabled in our algorithm, to enumerate meaningful schedules by re-ordering
dependent atomic blocks. However, they assume that the program under test
follows a consistent mutual-exclusion discipline using locks. The dynamic par-
tial order reduction technique proposed by Carver and Lei [2] guarantees that

A Race-Detection and Flipping Algorithm 179

exactly one interleaving for each partial order is explored. However, the approach
involves storing schedules that have not been yet explored; this can become a
memory bottleneck.

More recently, dynamic partial order reduction proposed by Flanagan and
Godefroid [4] removes the memory bottleneck in [2] at the cost of possibly ex-
ploring more than one interleaving for each partial order. This technique uses dy-
namically constructed persistent sets and sleep sets [5] to prune the search space.
The key difference between the DPOR algorithm in [4] and our race-detection
and flipping algorithm is that,for every choice point, the DPOR algorithm in [4]
uses a persistent set and we use a postponed set. These two sets can be different
at a choice point. For example, for the 3-threaded program in Figure 4, if the
first execution path is (t1, 1,w)(t2, 2,w)(t3, 3,w), then at the first choice point
denoting the initial state of the program, the persistent set is {t1, t3}; whereas,
at the same choice point, the postponed set is {t1}. (Apart from scheduling the
thread t1, the race-detection and flipping algorithm also schedules the thread
t2 at the first choice point.) Note that the DPOR algorithm in [4] picks the
elements of a persistent set by using a complex forward lookup algorithm. In
contrast, we simply put the current scheduled thread to the postponed set at a
choice point.

t1:
1: x = 1;

t2:
2: y = 4;

t3:
3: x = 2;

Fig. 4. A Three-Threaded Program

Moreover, the implementation in [4] considers two read accesses to the same
memory location by different threads to be dependent. Thus for the 3-threaded
program in Figure 5, the implementation described in [4] would explore six inter-
leavings. We remove the redundancy associated with this assumption by using
a more general notion of race and its detection using dynamic vector clock al-
gorithm. As such, for the above example, we will explore only one interleaving.
Note that none of the previous descriptions of the above dynamic partial order
reduction techniques have handled programs which have inputs.

t1:
1: lv1 = x;

t2:
2: lv2 = x;

t3:
3: if (x > 0)
4: ERROR;

Fig. 5. Another Three-Threaded Program

In [13] concolic testing has been extended to test asynchronous message-
passing Java programs written using a Java Actor library. Shared memory sys-
tems can be modeled as asynchronous message passing systems by associating a
thread with every memory location. Reads and writes of a memory location can

180 K. Sen and G. Agha

be modeled as asynchronous messages to the thread associated with the memory
location. However, this particular model would treat both reads and writes sim-
ilarly. Hence, the algorithm in [13] would explore many redundant executions.
For example, for the 2-threaded program t1 : x = 1; x = 2; t2 : y = 3; x = 4;, the
algorithm in [13] would explore six interleavings. Our algorithm assumes that
two reads are not in race and thus would explore only three interleavings of the
program.

In a similar independent work [18], Siegel et al. uses a combination of symbolic
execution and static partial order reduction to check if a parallel numerical
program is equivalent to a simpler sequential version of the program. However,
their main emphasis is in symbolic execution of numerical programs with floating
points, rather than programs with pointers and data-structures. Therefore, static
partial order reduction proves effective in their approach.

Model checking tools [19,3] based on static analysis have been developed,
which can detect bugs in concurrent programs. These tools employ partial order
reduction techniques to reduce search space. The partial order reduction depends
on detection of thread-local memory locations and patterns of lock acquisition
and release.

7 Conclusion

We presented an efficient algorithm for testing multithreaded programs. A pure
symbolic execution based testing algorithm for concurrent programs may end
up exploring redundant execution paths having the same partial order. This is
because optimal partial order reduction requires accurate knowledge of depen-
dency relation; such knowledge may not be computable due to inaccuracies of
alias analysis during symbolic execution. On the other hand, a pure concrete
execution based testing algorithm for concurrent programs requires the explo-
ration of all partial orders for all possible inputs. This may not scale up if the
domain of inputs is large. Our algorithm addresses the limitations of both these
approaches by extending concolic testing with the race-detection and flipping
algorithm. The concrete execution of concolic testing helps to resolve aliases
exactly at runtime. As a result we get the exact dependency or causal relation
among the events. The symbolic execution helps to generate a small set of inputs
from a large domain of inputs through constraint solving. Therefore, we believe
that concolic execution combined with the race-detection and flipping algorithm
is an attractive technique to test concurrent programs.

Acknowledgment

We would like to thank Ras Bodik, Timo Latvala, Darko Marinov, Grigore Roşu,
and Mahesh Viswanathan for useful discussions and comments. This work is
supported in part by the ONR Grant N00014-02-1-0715, the NSF Grant NSF
CNS 05-09321. The work was done primarily while the first author was at the
University of Illinois at Urbana Champaign.

A Race-Detection and Flipping Algorithm 181

References

1. D. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis,
MIT, 1999.

2. R. H. Carver and Y. Lei. A general model for reachability testing of concur-
rent programs. In 6th International Conference on Formal Engineering Methods
(ICFEM’04), volume 3308 of LNCS, pages 76–98, 2004.

3. J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera : Extracting Finite-state Models from Java Source Code. In
Proc. of ICSE’00: International Conference on Software Engineering, Limerich,
Ireland, June 2000. ACM Press.

4. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In Proc. of the 32nd Symposium on Principles of Programming Languages
(POPL’05), pages 110–121, 2005.

5. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem, volume 1032 of LNCS. Springer-
Verlag, 1996.

6. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In 24th
ACM Symposium on Principles of Programming Languages, pages 174–186, 1997.

7. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. In Proc. of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI), 2005.

8. S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for
model checking and testing. In Proc. 9th Int. Conf. on TACAS, pages 553–568,
2003.

9. J. C. King. Symbolic Execution and Program Testing. Communications of the
ACM, 19(7):385–394, 1976.

10. C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding feasible abstract counter-
examples. International Journal on Software Tools for Technology Transfer
(STTT’03), 5(1):34–48, 2003.

11. D. Peled. All from one, one for all: on model checking using representatives. In
5th Conference on Computer Aided Verification, pages 409–423, 1993.

12. K. Sen. Scalable Automated Methods for Dynamic Program Analysis. PhD thesis,
University of Illinois at Urbana-Champaign, June 2006.

13. K. Sen and G. Agha. Automated systematic testing of open distributed programs.
In International Conference on Fundamental Approaches to Software Engineering
(FASE’06), LNCS (To appear), 2006.

14. K. Sen and G. Agha. CUTE and jCUTE : Concolic unit testing and explicit path
model-checking tools. In Computer Aided Verification (CAV’06), LNCS, 2006. (To
Appear).

15. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In
5th joint meeting of the European Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’05).
ACM, 2005.

16. K. Sen, G. Roşu, and G. Agha. Runtime Safety Analysis of Multithreaded
Programs. In 9th European Software Engineering Conference and 11th ACM
SIGSOFT International Symposium on the Foundations of Software Engineering
(ESEC/FSE’03), pages 337–346. ACM, 2003.

17. K. Sen, G. Roşu, and G. Agha. Online efficient predictive safety analysis of mul-
tithreaded programs. International Journal on Software Technology and Tools
Transfer, 2006.

182 K. Sen and G. Agha

18. S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke. Using model checking
with symbolic execution to verify parallel numerical programs. Technical Report
UM-CS-2005-15, University of Massachusetts Department of Computer Science,
2005.

19. S. D. Stoller. Model-Checking Multi-Threaded Distributed Java Programs. In
Proc. of SPIN’00: SPIN Model Checking and Software Verification, volume 1885
of LNCS, pages 224–244. Springer, 2000.

20. A. Valmari. Stubborn sets for reduced state space generation. In 10th Conference
on Applications and Theory of Petri Nets, pages 491–515, 1991.

21. W. Visser, C. Pasareanu, and S. Khurshid. Test Input Generation with Java
PathFinder. In Proceedings of ACM SIGSOFT ISSTA’04, pages 97–107, 2004.

Explaining Intermittent Concurrent Bugs by

Minimizing Scheduling Noise

Yaniv Eytani and Timo Latvala�

Department of Computer Science, University of Illinois at Urbana-Champaign, USA
yeytani2@uiuc.edu, tlatvala@uiuc.edu

Abstract. A noise maker is a tool for testing multi-threaded programs.
It seeds shared memory accesses and synchronization events (concurrent
events) with conditional context switches and timeouts during runtime,
in order to increase the likelihood that a concurrent bug manifests itself.
However, an instrumented program with many seeded events may not
be useful for debugging; events have been seeded all over the source code
and provide almost no information regarding the bug. We argue that
for many bug patterns only a few relevant context switches are critical
for the bug. Based on the observation that bugs involve only a small
set of critical events, we develop a randomized algorithm to reduce the
scheduling noise and discover these events related to the bug. To evalu-
ate the effectiveness of our approach, we experiment with debugging of
industrial code, known open source code software, and programs repre-
senting known concurrent bugs. Our results demonstrate that this simple
technique is in many cases very powerful, and significantly helps the user
locating and understanding concurrent bugs.

Keywords: Concurrent debugging, testing, scheduling noise, Java.

1 Introduction

The increasing popularity of Java concurrent programming, both on the client
and the server side, has brought to the forefront the issue of concurrent defects
analysis. Concurrent defects such as unintentional race conditions and deadlocks
are very common, yet are very difficult to uncover. As a result, such bugs often
remain undetected and are discovered only after product deployment, when it is
expensive to correct them. The reason it is hard to detect these concurrent defects
is that for a given functional test, the size of the set of possible interleavings
can be unbounded. It is not possible to test them all. Only a fraction of the
interleavings actually produce concurrent faults.

The large interleaving space is not the only factor affecting the problem of
debugging multi-threaded programs. Tests that reveal faults run under environ-
mental conditions that are different from the ones found in the debugging stage.
Consequently, faults are not necessarily repeatable. Once a fault is detected,
� Supported by the Academy of Finland (project 109539) and the Emil Aaltonen

Foundation.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 183–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

184 Y. Eytani and T. Latvala

extensive efforts must be invested in recreating the conditions under which it
occurred. When these are finally recreated, the debugging itself may mask the
bug (the probe effect). For example, adding debugging printing may change tim-
ing conditions and mask a concurrent bug.

Previous work showed that inducing different timing scenarios through the ad-
dition of scheduling perturbations [1,2,3] increases the likelihood of concurrent
bugs being discovered. This is based on seeding scheduling noise during program
execution by instrumenting the program with conditional synchronization primi-
tives (such as yield(),wait() or sleep()). These primitives are performed with
a given probability, and they trigger context switches or timeouts during the ex-
ecution of the program. The seeded program is more likely to execute different
interleavings, and therefore trigger bugs in the program. Inducing scheduling
noise helps triggering bugs, but a program with many seeded events (or even
the trace of the run) does not help pinpointing the bug nor understanding the
reason why the program fails.

In this work we take a test generation based approach for finding the root
causes of race related bugs in concurrent programs. We argue that in practice
concurrent bugs are small, i.e. they do not require many context switches or
timeouts to manifest. Similarly, we observe that scheduling preconditions for
reaching concurrent bugs are also simple: bugs do not usually depend on complex
interleavings for reaching the relevant events. Consequently, finding a minimal
set of seeded events that generates interleavings manifesting a bug can be very
helpful in the debugging process. The small set of seeded locations are very likely
related to scheduling permutations leading to the bug.

We present a simple black-box and randomized algorithm for automatically
minimizing scheduling noise (assuming that the correct test result is known a-
priori). Our approach has many benefits. It is lightweight and runs on the byte
code of the program; it does not require complex symbolic analysis or using
computationally intensive solvers. The bug is not guaranteed to occur every
time the test is run with the minimal set of seeded locations, but it will occur
with a reasonably high probability. Hence, our approach eliminates the need for
deterministic replay or other heavy logging infrastructure.

We have implemented the noise reduction algorithm as a prototype tool. We
have evaluated our approach by experimenting with different types of examples
taken from various sources: real industrial code, known open source code, Java
runtime libraries, and programs used to evaluate testing and verification tools
at NASA. The experiments show that the locations found by our tool are very
helpful for pinpointing the root causes of the bug. We also describe the lessons
learned by working with a large set of programs with different bug patterns.
Our experience shows that in many cases it is possible to explain the scenarios
leading to the bug by quickly examining the seeded locations and the program’s
control flow. Our work is done in the context of the Java programming language.
However, we believe that the approach is generally applicable to other languages
and threading libraries (e.g. C++ and POSIX).

Explaining Intermittent Concurrent Bugs by Minimizing Scheduling Noise 185

2 Concurrent Bug Patterns

In this section we present the common bug patterns that are being studied in
the academic literature and/or have been found in real code, and are scheduling
dependent. These types of bugs usually occur when the programmer conceives
the possible interleavings as a subset of the interleavings the Java semantics
actually allows [4]. For example, a programmer may assume that a scheduler
will always perform two sequential statements in the source code without context
switches interrupting the execution. This may be the case in a certain running
environment; however, it is not guaranteed by the Java semantics. Two of the
most investigated bug types are (i) deadlocks, and (ii) data races and atomicity
violations. We briefly describe previous research on these.

Work on race detection and atomicity has long traditions (for example [5]).
Savage [6] defines a data race as two accesses to a shared variable by different
threads, at least one of which is a write, with no mechanism used to prevent
simultaneous access. As a result, different runs of the same program with the
same input might change the sequence of the values a program variable had dur-
ing the run. Atomicity [7] is a common higher-level correctness requirement that
expresses non-interference between concurrently executed code blocks. A code
block is atomic, if every execution of the program is equivalent to an execution
in which that code block is executed without being interleaved with actions of
other threads. High-level races [8] can informally be described as when two con-
current threads have conflicting views accessing a set V of shared variables: the
two threads access variables in V but at least one of the threads does not access
V atomically. Programmers can make false assumptions of the program state
due to the view inconsistency.

Deadlocks are usually divided into two types: resource and communication
deadlocks. Resource deadlocks arise when processes compete for access to ex-
clusive resources. A process which requests resources must wait until it acquires
all the requested resources before it can proceed with its computation. A set of
processes is resource deadlocked if each process in the set requests a resource held
by another process in the set, forming a cycle of lock requests. Communication
deadlocks are conceptually different since the processes involved do not necessar-
ily share resources. However, the difference between the two types of deadlocks
is fairly superficial. In communication deadlocks, messages can be seen as the
resources for which processes wait.

There are certain programming language constructs in Java that are usually
associated with the different types of concurrent bugs described above. In Java
threads can communicate via shared objects by calling methods on those ob-
jects. In order to avoid data races in these situations, objects can be locked
using the synchronized statement, or by declaring methods on the shared ob-
jects synchronized, which is equivalent. Java provides the wait() and notify()
primitives in support for user controlled interleaving between threads. While the
synchronized primitive is the main source of resource deadlocks in Java, the
wait() and notify() primitives are the main source of communication dead-
locks. For example, a lost notify() (or a lost signal) is a common cause of

186 Y. Eytani and T. Latvala

blocked threads in programs that use condition variables [4,9]. A notify() is
lost, if it is called before the thread it should wake up actually calls wait().
As a result, the notify has no effect and when that thread does call wait(), it
may wait forever. In addition, a lost notify() may induce other control errors
depending on the logical design of the program.

The presence of a concurrent bug in a program can be intimately related
to the data state of the program (see [7]). It may also be dependent on the
input data. However, we believe that focusing on purely race related bugs is very
beneficial and practical. Bugs that are caused by the scheduling nondeterminism
of concurrency continues to attract research interest as demonstrated above. We
believe that bugs that require very complex interactions are not interesting in
many real-life scenarios: the cumulative probability that exactly the right data
input is combined with a very complex sequence that occurs exactly in the right
order is very small, even if the system is run for extended periods.

2.1 Concurrent Bugs Are Small

Recent taxonomies of concurrent bugs have been presented in [4,9,10,11]. Ana-
lyzing these, we observe that a concurrent bug manifests when a few concurrent
events occur in a specific order. We can thus identify a concurrent bug with that
set of concurrent events. The set of events that constitute the concurrent bug in-
volves events from different threads. A context switch is required before or after
some of the events for the bug to manifest itself. For a set of events to expose the
concurrent bug, it is best that no other switches occur in other locations in the
sequence. Redundant context switches hide the underlying reason for the bug.

The number of events related to a bug (which intuitively corresponds to a
measure of the size of a concurrent bug) is usually small. This is supported
by the above mentioned studies of concurrent bug patterns, research on data
races [6], atomicity [7], and stale values [12]; recent research on techniques such as
context-bounded model checking [13,14] and concurrent coverage models [15,16].
All suggest that concurrent bugs are usually composed of a small number of
interacting relevant events and a specific ordering for the events.

Even though both deadlocks and high-level races can theoretically involve any
number of threads, in practice the number of threads needed to trigger a bug tends
to be small [8,17,18]. The initial deadlock detection algorithm of Havelund [17],
used for testing NASA software, only works for interactions between two threads,
and it was extended to several threads only recently [19]. Furthermore, our own
experience when compiling a benchmark of multi-threaded Java programs [20] also
supports the notion that bugs found in real code tend to be small.

3 Seeding Noise

The nondeterministic nature of Java program execution is controlled by the
scheduling mechanism of Java threads. An execution behavior of a thread sched-
ule can be characterized by the order of shared variable accesses and synchro-
nization events [21], referred to as events in this paper. Finding concurrent bugs

Explaining Intermittent Concurrent Bugs by Minimizing Scheduling Noise 187

is very much about finding schedules of the concurrent threads that trigger the
bug. Running a test several times will might not reveal a bug because of the
deterministic nature of the underlying scheduler: repeating the test will not in
most cases produce a new interleaving of the test.

Model checkers try to exhaustively explore all schedules (interleavings), and
are therefore always guaranteed to find the bug if it exists, provided that the
model checker does not run out of resources. The systematic and exhaustive
nature of model checkers is attractive, but it limits their scalability. Noise mak-
ing [1,2] is a technique that is more scalable but less systematic. The scheduler
of the underlying machine can be influenced by performing a conditional seeding
of events. Calls to a scheduling function are inserted at selected points in the
program under test. The scheduling function either does nothing or causes a
context switch with a certain probability. However, the noise makers themselves
do not report results; rather, they strive to make the tests fail. Noise makers rely
on the tests to trigger assertions or other mechanisms for detecting that a test
has failed. We explain the technique in more detail below.

A scheduling function works by inserting a scheduling primitive, or a combi-
nation of such primitives, that may cause context switches, timeout, or delay a
set of events. An example of a seeding primitive is Java’s yield() instruction. It
will probably cause the current thread to give up the CPU and to be transferred
to the end of the ready threads queue. The thread will be scheduled to some
processing unit when it reaches the head of the queue. Intuitively, a yield()
can be seen as a directive for a possible transfer of control from one thread to
another. As a result of the seeding process, each time a functional test is run, it
will produce a potentially different interleaving.

An important property of noise making is the probabilistic completeness prop-
erty: if all relevant locations are seeded, there is a sequence of choices by the
scheduling function for each reachable deadlock and assertion violation [1]. Thus,
there is a non-zero probability of finding a buggy interleaving by testing the
seeded program, even if the probability of finding it by testing the original pro-
gram in the same runtime environment is zero due to the particular thread
scheduler in that runtime environment. We only assume that the thread sched-
uler is fair.

4 Explaining Intermittent Concurrent Bugs

Previous work [22] shows that conditional seeding of critical events can increase
the likelihood that a bug is either masked or revealed. Most bugs require that a
context switch occurs at a specific location. For example, a program with an er-
roneous data race may exhibit the bug only if the two competing threads read or
write the variable in question in a certain order. However, in many cases the un-
derlying scheduler will work deterministically. Thus, a context switch will not oc-
cur between two given consecutive statements in one thread. A seeding event that
triggers the bug may re-create the bug frequently and therefore pinpoint a state-
ment where an atomicity violation occurs in the source code. Instrumenting the

188 Y. Eytani and T. Latvala

T2T1

A2A1
B1 B2
C1 C2
D1 D2
E1 E2
F1 F2

T2T1

A2A1
B1 B2
C1 C2
D1 D2
E1 E2
F1 F2

T1 T2
.
E1: if (x!=0) E2: x=0;
F1: y=1/x; F2: z=y;

(a) (b) (c)

Fig. 1. Sample execution traces

program with many seeded events does not aid debugging: events that have been
seeded all over the source code provide almost no information regarding the lo-
cation of the atomicity violation. In addition, different seeded events can interact
with each other in ways that will make it hard for the programmer to correlate
the behavior leading to the bug manifesting itself with the seeded events.

Figure 1 illustrates the difference between many and few seeded events. In
Fig. 1(a) and Fig. 1(b) two execution traces are depicted, both of them lead-
ing to a concurrent bug manifesting. We can examine the traces in a black box
manner, where we record the events occurring but do not attribute any seman-
tic meaning to the corresponding statements in the source code. The arrows in
Fig. 1 represent context switches occurring between the two threads. By exam-
ining the trace in Fig. 1(a) we can observe that the bug probably occurs due to
events E1 and F1 executing in a non-atomic manner, even with out understand-
ing the semantic meaning of these events. Fig. 1(b) does allow us to correlate
the bugs with a specific seeding, but it forces us to review the source code thor-
oughly in order to locate the bug. By examining the relevant parts of the source
code in Fig. 1(c), we can see that the bug can be easily explained by context
switching at E1.

Deterministically finding a small set of seeded events that triggers the bug may
be hard. A context switch at the wrong time can cancel the effect of a necessary
switch, effectively masking the bug. To illustrate this point, consider the simple
program in Fig. 2. The program is similar in nature to the program in Fig. 1(c).
In this example the two threads acquire two locks in a symmetric manner. Con-
text switching at the right points can cause the program to deadlock. If thread 1
executes first, the deadlock can occur if a context is switch is triggered after the
first statement; thread 1 would regain control after thread 2 has acquired lock b.
The situation is symmetric if thread 2 would have been executed first. A context
switch between acquiring the locks in one thread is a necessary precondition
for the bug to manifest. However, two context switches may cancel each other,
thus effectively masking the bug by allowing one of the threads to to complete the

Explaining Intermittent Concurrent Bugs by Minimizing Scheduling Noise 189

T1 T2
.
E1: lock(a); E2: lock(b);
F1: lock(b); F2: lock(a);

Fig. 2. Simple deadlocking concurrent program with two threads

locking sequence before the other thread. By seeding events near the lock()-
statements, the deadlock would manifest itself after executing the program a few
times. Although the interactions between events occurring in a program affect
how exactly a bug manifests, the probability for performing the right set of
switches is still high. This is illustrated in our example in Fig. 2, where there
is a simple even/odd symmetry of context switching for reaching the lock()-
statements from different threads.

In addition to events where seeding affects the likelihood that a bug manifests,
there also exist events for which conditional seeding does not affect whether the
bug is revealed or not. Such ”neutral” events can be dependent on the context
of an execution. A trivial example is any event reached after the bug has already
occurred. The neutral events can usually be removed. Given a functional test,
we can nicely de-couple the conditions for a bug to manifest into (i) reaching a
usually simple scheduling precondition, and (ii) executing some events relevant
to the bug in a given order. For example, in Fig. 1(c) the precondition is that
event E1 happens before event E2. If we start from thread 1, an arbitrary even
number of context switches is required before reaching E1 and E2. These context
switches can be safely removed to simplify the trace as long as the scheduling
precondition invariant is maintained. This, however, implies that such switches
cannot be removed in a completely deterministic way without a-priori knowl-
edge about the semantics of the programs. Hence, a number of changes in the
scheduling preconditions, such as executing a certain thread first, should not
severely affect the likelihood of occurrence of the bug as long as the interactions
between different seeded events are small. This motivates our use of a simple
randomized algorithm to reduce the number of seeded events, as described in
the next section.

5 An Algorithm for Minimizing Noise

Once a concurrent bug has occurred, we would like to locate a small set of
related seeded events. Based on our observations above, randomly selecting a
small set of events should be a good strategy. However, we do not know the
number of required good events. This problem can be overcome by using an
iterative approach. The general strategy we use is the following. We repeatedly
run the program and iteratively create a smaller hypotheses for the correct set of
seeded events. As the first set we will choose a set of seeded events that caused
the bug to manifest itself. To obtain a smaller set, we apply noise to a randomly
selected subset of these and check if the bug still manifests itself. If the bug still

190 Y. Eytani and T. Latvala

1 I = SubsetOfConcurrentEvents(Program)
2 (s, done) = new s(I, s, done)
3 I ′ = RandomSubset(I, s)
4 while(¬done) :
5 Run the noise maker with noise only on concurrent events in I ′

6 if (there was a concurrent bug in the last run):
7 I = I ′

8 (s, done) = new s(I, s, done)
9 I ′ = RandomSubset(I, s)
10 Print I as explanation for bug

Fig. 3. Algorithm for minimizing noise

occurs for the subset of events, we conclude that the subset is related to the bug
and repeat the process recursively on that subset.

A set of good events that are known to cause the bug to manifest itself are
called the initial events (I). This set is known to be related to the concurrent bug
and is used as our base hypothesis. We can create I by using previously proposed
methods; these could be heuristics related to highly contended variables [3],
non-uniform seeding [22], or uniform seeding techniques [2,1]. Using the set of
initial events I, we start minimizing the set of events. There are several possible
strategies for selecting a new set of events. We could randomly select a subset I ′

of I and then run the program repeatedly with the new set of seeded events. If
a large enough fraction (defined by a parameter) of the runs causes the bug to
manifest, we accept this set of events as the new set. A much simpler strategy
is to choose a new subset of events I ′ every run. Usually a simple strategy like
randomly choosing half of the events works well. When running the program, the
seeded synchronization primitives cause random context switches and timeouts
at events in I ′. We check whether the concurrent bug has manifested after the
program is run. If the concurrent bug occurs, we replace I with I ′ and apply the
same procedure again. In this paper we have used the latter strategy to minimize
noise.

In the pseudo-code in Fig. 3, the function new s(I, s, done) decides whether
we have reached a fixpoint and how large the next subset should be. The function
also decides whether we have reached a fixpoint and should not try to minimize
I ′ further. In practice, the algorithm stops when a set with a small number of
seeded events (1-3, pre-defined by a parameter) are found or we cannot find a
smaller set where the bug manifests with high probability. After the algorithm
has stopped, the resulting events are identified by their program location, method
scope and variable name, and then presented to the user.

With this simple approach, reproducibility of bugs is likely but not guaran-
teed. Guaranteed reproducibility requires a capture-and-replay mechanism. Note
that choosing a small set of seeded events can be seen as a special case of partial
replay [2] that was shown to work well in practice.

Explaining Intermittent Concurrent Bugs by Minimizing Scheduling Noise 191

6 Experimental Results

We have implemented the noise minimization algorithm as a prototype tool. Our
implementation interfaces with ConTest’s instrumentation engine [2]. This eases
implementation and allows us to focus on the noise minimization algorithm.
Although our implementation works with Java, we see no reason why it could
not be interfaced with e.g. the POSIX pthreads library.

To evaluate our approach we tested the algorithm on a set of programs of vari-
ous types taken from various sources: real industrial code, known open source code,
Java runtime libraries, programs used to evaluate testing and verification tools at
NASA, and programs from a multi-threaded benchmark consisting of implementa-
tions of known bug patterns [23]. In what follows we provide detailed explanations
for four of the programs. The program sizes range from around 200 to 1200 lines
of code. In order to create an initial set of seeded events we used the approach sug-
gested in [22].We seeded a randomsubset of variables until the bug firstmanifested.
We then used the set of seeded locations as the objective of our noise reduction al-
gorithm. Our experience is not limited to the big examples described here. The
results below are representative of our experience with the tool.

Tomcat Logger. Tomcat is a popular open source Java application server. It
can be used to generate dynamic web content that can access databases and
other resources. The bug we explored in Tomcat logger occurs because of a race
on a static variable in the class org.apache.tomcat.util.log.SystemLogHandler.
The class has a static variable, reuse, which represents a stack that is shared
between different threads. In the method startCapture() (see Fig. 4) there is
an obvious race between the function calls reuse.empty() and reuse.pop(). If
a context switch occurs just after the if-statement, another thread can empty
reuse, causing an EmptyStack-exception at reuse.pop().

Our algorithm pinpoints the bug and reports that context switching after the
if is an important location for the bug. Understanding the bug with this infor-
mation is fairly straight-forward as the race condition between reuse.empty()
and reuse.pop() is fairly obvious. To fix the error the if-block should be en-
closed with a synchronized block.

Crawler. Crawler is a web crawling algorithm embedded in an IBM product
and is implemented using a “worker thread” design pattern. For the experiment
we used a skeleton of the program previously used internally at IBM for testing.
This was still 1200 lines of code spread over 19 classes (for more details see [2]).

The crawler algorithm contains two concurrent bugs known to us. The first
is a race condition bug that triggers a null pointer exception. A shared variable
connection is manipulated carelessly in the finish() method of the Worker
class. The method has the following line:

if(connection ! = null) connection.setStopFlag();

If the connection variable is not null and after that a context switch occurs,
the connection variable might be set to null by another thread. Should this hap-
pen before connection.setStopFlag() is executed, a null pointer exception is

192 Y. Eytani and T. Latvala

public static void startCapture() {
...
if (!reuse.empty()) {
log=(CaptureLog) reuse.pop();

} else {
log=new CaptureLog();

}
...

}

Fig. 4. Skeleton for buggy method in Tomcat

thrown. To fix this bug, the above statement should be executed within an appro-
priate synchronized block so that the execution of the block would be atomic.

The set of locations that our algorithm returns are after the if-block above,
and the place in the code of the Worker class where the variable connection is
set to null. This makes explaining the bug very simple. Understanding the bug
without the locations provided by our algorithm is fairly challenging. Crawler
has more than 40 variables, which makes locating the bug manually very hard.

The second bug in Crawler is a deadlock reported in [3]. Applying the algo-
rithm shows that when seeding delay to locations in the waitForConnection()
function the deadlock occurs. Since the code itself contains some printings for
debugging, explaining the bug from an execution trace if fairly simple. When a
thread is seeded with a delay near the end of the run, the function finish()
executes before the waitForConnection() function. This leads to the program
not terminating.

Java Collection Library. The Java Collection library provides containers that
should be thread safe. Although the library has been extensively tested, Sen and
Agha [24] report several race related errors in the library.

The ArrayList class has a race related error that can trigger an uncaught
ConcurrentModificationException exception. The bug occurs in a simple sce-
nario only involving two threads. Two synchronized lists l1 and l2 are created,
and a single object is added to each list. If the two threads concurrently call
the functions l1.add(new Object()) and l2.containsAll(l1), certain inter-
leavings of the threads will cause a race on the field modCount of the ArrayList
class. The result is the uncaught exception. The program never throws the ex-
ception if the methods are invoked in any order by a single thread. Our algorithm
pinpointed the non-atomic segment between the assignments of modCount when
l2.containsAll(l1) creates an iterator for l1 that records modCount, and a
call to an hasNext() function that checks modCount to be of the same value.
Examining the trace, we notice that add() increments this field between calling
the constructor of the iterator and the invocation of the hasNext() function,
and thus causes the exception. We were able to debug similar bug patterns in
other Java runtime libraries such as LinkedList.

Explaining Intermittent Concurrent Bugs by Minimizing Scheduling Noise 193

Concurrent Readers, Exclusive Writing. This code is one of the exam-
ples used to test the Java PathFinder model checking tool developed by NASA.
It includes an intentionally buggy implementation of the concurrent readers,
exclusive writer scenario [25]. In this scenario the implementation should guar-
antee that several readers can read the database concurrently. Writes should
be exclusive so that only the single writer has access to the database. The bug
in the implementation causes non-atomicity in the write() function. Seeding
noise helps trigger the bug, because it triggers context switches in the write()
function that did not occur when normally executing the program. However, the
noise does not pinpoint the exact location of the bug although it reveals the non-
atomicity of the write() function. This is because the bug causes an error in the
control flow, and noise making can only identify the symptom, non-atomicity, in
this case. However, given the symptom and by examining the control flow of the
program it is possible to detect the defect.

7 Related Work

Static analysis tools of various types [11] as well as formal analysis tools [26,13,27],
are also being developed to detect faults. Static technologies are being used to gen-
erate information that other technologies may find useful, such as a list of program
statements from which there can be no thread switch [28] (single thread execut-
ing). Tools used for replay and partial replay [21,2] are necessary for debugging
and contain technology that is useful for testing. Other tools that present specific
and interesting views of the interleaving space to help analyze both coverage and
performance include [29,30].

A different approach is taken by a set of tools called noise makers, which
increase the likelihood of bug discovery by inducing different timing scenar-
ios through the addition of scheduling perturbations [1,2,3]. If done with care,
the seeding technique only creates correct interleavings and does not interfere
with replay algorithms [2]. Biased heuristics based on coverage information were
shown to increase the probability that the concurrent defect is uncovered com-
pared to unbiased seeding [3]. Most previous research on noise making generally
used a white box approach. In [1], static analysis was suggested for use in de-
tecting the locations where thread switches will help reveal bug patterns. In [2],
noise-making decisions were made based on coverage information. Experiments
carried out in [3] showed that focusing on the locations related to variables one-
at-a-time will improve the probability of finding bugs.

Recent work [22] explored the theory and practice of deciding where in the
program to induce thread switches. It proposed a model and static classification
of seeding to be of good, bad or neutral for placing thread switches according
to their effect on the probability of the bug manifesting itself. The work in [31]
formulated noise making as a search problem. It used a genetic algorithm as the
search method. It applied some of the insights presented here to define a fitness
function that allows it to converge to a small set of good seeded events.

194 Y. Eytani and T. Latvala

Noise minimization can naturally be compared to work on the delta debugging
technique [32], which extracts differences between failing and successful test cases
and their executions. The original delta-debugging work applied to test inputs
only, but was later extended to minimize differences in thread interleavings [33].
Our method is an improvement w.r.t. delta debugging in several ways. First,
inducing different thread schedules using delta debugging may require a replay
mechanism, which has inherent limitations. Second, delta debugging assumes
that no thread switch can disable the bug. This assumption may be sufficient for
debugging purposes where one can assume that a failing schedule only contains
events that either cause the bug or are indifferent to it. However, a context
switch may sometimes alternate between being good, bad or neutral in its effect
on manifesting the bug. By taking a probabilistic test generation approach our
method avoids these problems. Thus, we believe that our approach is simpler
but can still be seen as a more general one.

8 Lessons Learned and Conclusions

Generating random scheduling noise is an effective way of triggering concurrent
bugs. Precisely located scheduling noise can be very helpful in locating and
understanding bugs. Our simple approach using noise minimization efficiently
finds a set of locations related to the bug automatically. In our evaluation of the
algorithm, the locations provided by our algorithm proved to be very helpful for
understanding the bug. Simplicity is one of the key strengths of our approach.
It is black-box and requires no complex logging infrastructure such as replay.

In what follows, we further describe the lessons learned while applying this
method. We also base our discussion on our work on the multi-threaded bench-
mark [20]. One of the assumptions of this work was that programmers usually
assume that small-size code blocks are atomic; hence they sometimes avoid forc-
ing correct synchronization for shared variables in such code blocks. A second
assumption was that once noise is applied in the correct location, the concurrent
bug manifests itself. Since the non-atomic code blocks are relatively small, it will
facilitate localizing the bug.

When examining the code and the bugs, we found that concurrent code is
generally written in a very concise way. The relevant code blocks are small,
and the seeded events are indeed very indicative of the statements related to the
bug. Many of the bugs involve the issue of control, e.g. an if-statement guarding
access to a shared variable. We found that in this scenario the guarding if tends
to be very close to the protected variable. This scenario also exists in the case
of condition variables, where wait() or notify() are usually guarded with if-
statements.

In order to explain the bugs, we found two simple trace reviewing methods
to be effective. The first is to observe where the first access to a shared variable
takes place after the seeded events of that type. We also found that looking at
the methods where seeding occurs provides a reasonable high level description
of the bug scenario. This was also helpful for reasoning about some of the bugs

Explaining Intermittent Concurrent Bugs by Minimizing Scheduling Noise 195

where the control flow error was not related directly with the race, or when
the bug involved actual timeouts that changed the order of the methods being
executed.

Our approach has some limitations. The first limitation is caused by the fact
that our algorithm converges to a small number of locations in the source code.
This means that if several bugs share the same assertion violation, the algorithm
will converge to only one of them. However, this is not a severe limitation as a
common practice in debugging is to fix one bug at a time [34]. Another limitation
is that our algorithm is dependent on seeding the correct events to localize the
scheduling noise. However, this is true only for intermittent bugs that do not
appear without applying noise.

Previous work [3,22] shows that variables tend to be good functional abstrac-
tions of a subset of the program’s events. Often it is beneficial to treat all events
before or after a shared variable access as a single event of a larger granularity.
We believe that there are other useful functional abstractions, such as methods
and possibly classes, that may act in a similar manner. For example, in the dead-
lock in Crawler scheduling noise determines the order of two methods, regardless
of at which locations it is applied. Knowing that we need to seed an event in
a method, instead of seeding of a few different statements in the method, will
provide more information to the programmer. In addition, we also believe it may
be beneficial to identify events where seeding masks the bug. This step should
provide additional information useful for debugging and allow us to reason about
the interaction of events in the program, without inspecting the actual semantics
of the program. This can also allow us to deal with bugs occurring frequently or
without applying noise.

Acknowledgements. The first author is indebted to Eitan Farchi, Shmuel Ur
and Yosi Ben Asher for their guidance on this research direction and early dis-
cussions on the subject. We thank Rajesh Kumar, Feng Chen and Koushik Sen
for their help during the preparation of the paper.

References

1. Stoller, S.D.: Testing concurrent Java programs using randomized scheduling. In:
Proceedings of the Second Workshop on Runtime Verification (RV). Volume 70(4)
of Electronic Notes in Theoretical Computer Science., Elsevier (2002)

2. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded Java program
test generation. IBM Systems Journal 41 (2002) 111–125

3. Ben-Asher, Y., Eytani, Y., Farchi, E.: Heuristics for finding concurrent bugs.
In: International Parallel and Distributed Processing Symposium, IPDPS 2003,
PADTAD Workshop. (2003)

4. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. [35]
286

5. Netzer, R., Miller, B.: Detecting data races in parallel program executions. In:
Advances in Languages and Compilers for Parallel Computing, 1990 Workshop,
Irvine, Calif., Cambridge, Mass.: MIT Press (1990) 109–129

196 Y. Eytani and T. Latvala

6. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dy-
namic data race detector for multithreaded programs. ACM Transactions on Com-
puter Systems (TOCS) 15 (1997) 391–411

7. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multi-
threaded programs. In: 31’st ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL). (2004)

8. Artho, C., Havelund, K., Biere, A.: High-level data races. In: VVEIS’03, The First
International Workshop on Verification and Validation of Enterprise Information
Systems, Angers, France. (2003)

9. Long, B., Strooper, P.A.: A classification of concurrency failures in Java compo-
nents. [35] 287

10. Hallal, H., Alikacem, E., Tunney, W.P., Boroday, S., Petrenko, A.: Antipattern-
based detection of deficiencies in Java multithreaded software. In: QSIC, IEEE
Computer Society (2004) 258–267

11. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Notices 39 (2004)
92–106

12. Artho, C., Havelund, K., Biere, A.: Using block-local atomicity to detect stale-
value concurrency errors. In Wang, F., ed.: ATVA. Volume 3299 of Lecture Notes
in Computer Science., Springer (2004) 150–164

13. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs.
In Etessami, K., Rajamani, S.K., eds.: CAV. Volume 3576 of Lecture Notes in
Computer Science., Springer (2005) 82–97

14. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In Halbwachs, N., Zuck, L.D., eds.: TACAS. Volume 3440 of Lecture Notes in
Computer Science., Springer (2005) 93–107

15. Bron, A., Farchi, E., Magid, Y., Nir, Y., Ur, S.: Applications of synchronization
coverage. In Pingali, K., Yelick, K.A., Grimshaw, A.S., eds.: PPOPP, ACM (2005)
206–212

16. Tasiran, S., Elmas, T., Bolukbasi, G., Keremoglu, M.E.: A novel test coverage
metric for concurrently-accessed software components. In Grieskamp, W., Weise,
C., eds.: FATES. Volume 3997 of Lecture Notes in Computer Science., Springer
(2005) 62–71

17. Havelund, K.: Using runtime analysis to guide model checking of Java programs.
In Havelund, K., Penix, J., Visser, W., eds.: SPIN. Volume 1885 of Lecture Notes
in Computer Science., Springer (2000) 245–264

18. Artho, C., Biere, A.: Applying static analysis to large-scale, multi-threaded Java
programs. In: Australian Software Engineering Conference, IEEE Computer Soci-
ety (2001) 68–75

19. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-
grams. In: Parallel and Distributed Systems: Testing and Debugging 2005 (PAD-
TAD’05). Volume 3875 of Lecture Notes in Computer Science., Springer (2006)
208–223

20. Eytani, Y., Ur, S.: Compiling a benchmark of documented multi-threaded bugs.
In: IPDPS, IEEE Computer Society (2004)

21. Choi, J.D., Srinivasan, H.: Deterministic replay of Java multithreaded applica-
tions. In: Proceedings of the SIGMETRICS Symposium on Parallel and Distrib-
uted Tools, Welches, Oregon (1998) 48–59

22. Ben-Asher, Y., Eytani, Y., Farchi, E., Ur, S.: Producing scheduling that causes
concurrent programs to fail. Technical Report UIUCDCS-R-2006-2684, University
of Illinois at Urbana-Champaign (2006)

Explaining Intermittent Concurrent Bugs by Minimizing Scheduling Noise 197

23. Eytani, Y., Havelund, K., Stoller, S., Ur, S.: Toward a framework and benchmark
for testing tools for multi-threaded programs. Concurrency and Computation:
Practice and Experience (to appear)

24. Sen, K., Agha, G.: jCUTE: Automated testing of multithreaded programs using
race-detection and flipping. Technical Report UIUCDCS-R-2006-2676, University
of Illinois at Urbana-Champaign (2006)

25. Pasareanu, C.S., Dwyer, M.B., Visser, W.: Finding feasible abstract counter-
examples. STTT 5 (2003) 34–48

26. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10 (2003) 203–232

27. Corbett, J.C., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, Laubach, S., Zheng,
H.: Bandera: Extracting finite-state models from Java source code. In: Proc. 22nd
International Conference on Software Engineering (ICSE), ACM Press (2000)

28. Choi, J.D., Gupta, M., Serrano, M., Sreedhar, V., Midkiff, S.: Escape analysis
for Java. In: Proc. ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA). (1999)

29. Cheer-Sun Yang, A.S., Pollock, L.: All-du-path coverage for parallel programs.
ACM SigSoft International Symposium on Software Testing and Analysis 23 (1998)
153–162

30. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
STTT 2 (2000)

31. Eytani, Y.: Concurrent Java test generation as a search problem. In: Fifth Work-
shop on Runtime Verification, Edinburgh, UK (2005)

32. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng. 28 (2002) 183–200

33. Choi, J.D., Zeller, A.: Isolating failure-inducing thread schedules. In: ISSTA. (2002)
210–220

34. Liblit, B., Aiken, A., Zheng, A., Jordan, M.I. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, ACM (2003) 141–154

35. 17th International Parallel and Distributed Processing Symposium (IPDPS 2003),
22-26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings. In: IPDPS, IEEE
Computer Society (2003)

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 198–203, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Testing the Machine in the World

Michael Jackson

The Open University & Newcastle University
jacksonma@acm.org

A central aim of software testing is assurance of functional correctness and
dependability. For many software-intensive systems, including administrative,
embedded, enterprise and communication systems, functional correctness means
achieving the desired effects in the physical world, and dependability means
dependability of those effects. For example, an administrative system for a lending
library is required to ensure that only members can borrow books; that a member who
has reserved a book and has been notified that the book is now available for collection
in the library will not find that it has been lent to another member; that the catalogue
gives reliable information about what is currently on the shelves, and so on. Similarly,
a system to control a lift must ensure that the lift comes when summoned and takes
the user to the desired floor; that the building manager can specify service priorities in
terms of express lifts and time-dependent needs such as rush hours at the beginning
and end of the working day; and that failure of the mechanical equipment does not
endanger life.

The Machine, the World, and the Requirement

Functional correctness of such systems means that their requirements in the world are
satisfied by a cooperation between the machine, which is the software executing on
the computer, and the physical problem world itself. To demonstrate satisfaction it is
necessary to formulate and reason about three distinct subjects. First, the requirements
themselves, describing the desired effects in the world. Second, the specified
behaviour of the computer at its interface with the problem world. Third, the given
properties of the problem world on which the computer behaviour can rely to satisfy
the requirement. These three are related by an entailment: if a computer with the
specified behaviour is installed in a world with the given properties as described, then
the requirement will be satisfied. For example: the computer behaviour is specified in
terms of input and output ports at which it can switch the motor on and off and set its
polarity, monitor the request buttons and the floor sensors, and so on; it is a given
problem world property that a user wishing to summon the lift will press a request
button, that if the motor is on and its polarity is set upwards then the lift rises in its
shaft, and that when the lift is at the home position at a floor the corresponding sensor
is on; and it is a requirement that when the lift is summoned it comes to the floor.

In a software-intensive system the problem world is inherently non-formal. We
must reason about it to assure ourselves and our customers that the requirements will
be satisfied, but this reasoning is always fragile. We reason on the basis of
abstractions that are inevitably imperfect in the sense that we can never absolutely

 Testing the Machine in the World 199

exclude all possibility of a counterexample to any formal assertion about the world:
no bound can be set to the considerations that may affect the truth of a formal
assertion. Further, the problem world, unlike an abstract mathematical world, will
typically exhibit autonomous, and easily neglected, state changes: library members
may change their names, or become bankrupt, or emigrate or die, and the books may
be lost or destroyed; users who have requested the lift may change their mind and
walk away, or may place an obstruction between the lift doors while they go back and
forth between the open lift and their office. A functionally correct and dependable
software-intensive system must find a way to deal adequately with all these evident
obstacles to reliable formal reasoning.

The World Can Not Be Avoided

It may, therefore, seem attractive to eliminate the messy non-formal world from our
consideration as software engineers. Can we not treat our task simply as the
development of software to satisfy a formal specification of the computer’s behaviour
at its interface with the problem world, leaving the messy non-formality of the world
outside our cordon sanitaire? This was the view of Dijkstra, who regarded the
specification as a ‘logical firewall’ between the non-formal concerns of the world
outside and the formal task of program development. [1]

Unfortunately this neat division is not possible for a software-intensive system.
Specification of the computer behaviour to be evoked by the software will make little
sense when divorced from a clear description of the given properties of the problem
world and of the effects that the system must produce there. To understand the
stipulation that when line 17 goes high the computer must set line 23 low we must
talk in terms of the meaning of line 17—that a request button has been pressed on
floor 3—and of line 23—that the motor polarity is being set to upwards—and of the
association that the problem world and the system requirement impose between these
otherwise unrelated phenomena. In other words, we must reason, as before, about the
requirements, problem world properties, and computer specification.

Decomposition into Subproblems

The complexity of the system and its problem world demands mastering by
decomposition. An appropriate form of decomposition is to decompose the original
problem into subproblems. Like the original problem, each subproblem has a
requirement, a machine, and a problem world. For example, the lift control problem
may be decomposed into three subproblems. The first, the service subproblem,
provides lift service according to the priorities currently established by the building
manager; the second, the display subproblem, maintains a display in the ground floor
lobby showing the position of each lift and the outstanding service requests; the third,
the safety subproblem, monitors the equipment and, on detecting a fault, applies the
emergency brake that prevents an uncontrolled free fall of the lift car to the bottom of
the shaft. Each subproblem is concerned only with certain parts of the original
problem world. For example, the service subproblem is not concerned with the

200 M. Jackson

emergency brake or with the lobby display; and the safety subproblem is not
concerned with the display or with the request buttons. Further decomposition will be
needed. For example, the lift service subproblem must be decomposed into an editing
subproblem, in which the building manager edits a representation of the scheduling
priorities, and a scheduling subproblem, in which the latest edit priorities are used to
govern decisions about lift dispatch.

Normal Design and Subproblem Concerns

This kind of decomposition is based on two complementary principles. First, each
subproblem captures a coherent and intelligible subfunction of the system, where a
subfunction can often be loosely identified with a feature. Second, each subproblem
matches a recognised problem pattern. For example, editing the priority rules is a
problem of the same general kind as a simple text or graphics editor. There is an
analogy here, between subproblems identified in this way and the familiar
components of a physical system such as a motor car. This decomposition is typical of
what Vincenti [2] calls normal design: “The engineer engaged in such design knows
at the outset how the device in question works, what are its customary features, and
that, if properly designed along such lines, it has a good likelihood of accomplishing
the desired task.” A vital characteristic of normal design is that the unbounded
potential difficulties posed by the problem world are brought under a good degree of
control by accumulated experience. The engineering community knows what
concerns must be addressed to obtain a dependable product, and those concerns are
addressed partly by the standard normal design itself, and partly by the practice of
normal design in which the engineers pay explicit attention to the concerns that have
proved important in the past. Departure from normal design norms is a recipe for
failure—sometimes catastrophic, as in the famous collapse of the Tacoma Narrows
Bridge [3].

An example of such concerns in a component of a software-intensive system is the
initialisation concern. The need for initialisation of program variables is well known,
and schemes have been developed to ensure that failure due to accessing an
uninitialised variable can be reliably avoided. A similar concern applies to the
relationship between a software component and its problem world. When the lift
control program begins execution, for example, it may be necessary to ensure that the
lift car is at the ground floor with the doors open. Or, alternatively, it may be possible
for the software to detect the state of the problem world and to adjust its own initial
behaviour accordingly. There are many variations on this theme. What matters is that
the developers must be aware of the concern and know how to address it adequately.

Subproblems as System Components

If we regard subproblems as system components we must recognise that they do not
interact solely within the machine. On the contrary, much of their interaction takes
place through the medium of the problem world itself, as one component affects the
state of a part of the problem world that it shares with another subproblem. These

 Testing the Machine in the World 201

interactions in the problem world give rise to the need for explicit attention to
subproblem composition and to the composition concerns that accompany it. For
example execution of two subproblems that share a part of the problem world must be
controlled to obtain an appropriate interleaving: the newly edited representation of the
lift scheduling priorities must at some point be adopted by the lift service subproblem.
A very different example is the possibility of requirement conflict. The safety
subproblem may determine that the mechanical equipment has developed a fault, that
the emergency brake must be applied, and that the motor must be switched off and
held off; the lift service subproblem may at the very same time determine that there is
a service request for which the lift must be sent to a certain floor, and that the motor
must therefore be switched on. The conflict must, of course, be resolved by a
consideration of the relative precedence of the two requirements, and the chosen
precedence must be implemented in the composed system. Another example of a
composition concern is the need to ensure that failure of a non-critical function—
possibly by erroneous design or programming of the software—cannot cause failure
of a critical function. The lobby display subproblem, however badly, or even
perversely, implemented, must not be able to obstruct correct functioning of the safety
subproblem.

A Different View of Functional Correctness

These composition concerns compel us to consider a different, and more nuanced,
notion of functional correctness. In place of the single simplistic entailment relating
machine specification, given properties of the problem world, and requirement, we
have a corresponding entailment for each subproblem, along with the need to
compose and reconcile the different views of the problem world that have been
adopted for each individual subproblem. For the lift service subproblem the
mechanical equipment is fault-free; but for the safety subproblem it is potentially
faulty. For the lobby display the lift movement is autonomous, but for the lift service
it is the object of control. A comprehensive universal description of the problem
world properties, accommodating the point of view of every subproblem, would be
intractably complex and obscure. We are compelled to retain the view of the whole
problem and its world as an assemblage of components, locating our view of each
component in its place in the structure of interactions induced by our addressing of
the manifold composition concerns.

The unbounded richness of the problem world precludes a fully comprehensive
enumeration of all possible subproblem interactions. But it is useful to recognise two
general interaction categories, somewhat in the spirit of the treatment of feature
interactions in telecommunication systems. Some positive interactions must be
reliably realised by the implemented system. For example, the lift service subproblem
must use the newest edited version of the priority rules, and the lobby display
subproblem must recognise that the outstanding requests for a floor have been
serviced exactly when the lift service subproblem has indeed caused the lift to visit
that floor and to permit the requesting users to enter or leave the lift car. These
positive interactions are, in general, readily identifiable. But there is also a set of
potential negative interactions, in which the interaction of two subproblems causes

202 M. Jackson

undesired and even catastrophic effects. For example, it is imaginable that the
changeover from an older to a newly edited version of the priority rules might be able
to deadlock the lift service problem. Such negative interactions, of which there are
potentially an unbounded number, must be identified and addressed by the application
of normal design practices, in which are embodied the lessons learned by long
experience.

Some Implications for Software Testing

Ultimately, functional testing of a software-intensive system must take place when the
software has been installed in the problem world. Nothing less can bridge the gap that
is opened up between the non-formal nature of the problem world and the formal—or
quasi-formal—world of a well-engineered computer executing software written in a
well-defined programming language under a reliable operating system. But of course
such full integration testing is very expensive, and may sometimes be literally
impossible. So, for this reason alone, it is certainly necessary to conduct smaller and
cheaper unit tests, substituting simulation for the relevant parts of the real problem
world.

Since different subproblems typically take different views of the parts of the
problem world they have in common, the problem world simulation must embody
different properties according to the subproblem under test. One simulation of the
problem world cannot be enough.

Another reason for unit testing is the need to decompose the system function into
subfunctions in order to reduce the number of test cases needed. The hope here is that
the decomposed subfunctions, once tested, can be reassembled in a compositional
fashion. That is, that if subfunction A and subfunction B are both known to be correct,
then their composition into a combined function A+B must be correct. In its naïve
form this hope is too optimistic. Even if the interactions between the subproblem
software parts within the computer can be fully mastered, their interactions through
the medium of the problem world parts they share are potentially more problematical.
The sad story of the de Havilland Comet 1 aircraft showed the difficulty clearly. The
aircraft body had been fully tested for behaviour under compression and
decompression; and it had been fully tested for behaviour under flexing and torsional
stress: both tests showed that the fuselage design fully met its objectives in each
respect. But it had never been tested for both simultaneously, and in practice the
combination of both kinds of stress was a major contributor to the aircraft’s failure
in flight.

Testing is, from one point of view, a searching process, in which faults potentially
leading to failures are sought. The search should, ideally, be conducted in the light of
the richest possible knowledge of how faults come about and hence where they are
likely to be found. To take a very simple example from program coding, it is well-
known that programmers are prone to write the assignment operator ‘=’ in place of
the equality condition ‘==’; so a code inspection should search specifically for such
errors. In the same way, in a software-intensive system, such knowledge is the fruit of
the experience embodied in normal design. To know that subproblems of a particular

 Testing the Machine in the World 203

class raise an initialisation or identities concern, or that a particular subproblem
composition raises a switching or interleaving concern, is to know that testing should
explicitly search for failure to address those specific concerns in an adequate fashion.

References

[1] E W Dijkstra; On the Cruelty of really Teaching Computer Science; CACM 32,12,
December 1989, pp1398-1404.

[2] W G Vincenti; What Engineers Know and How They Know It; Johns Hopkins University
Press, 1993.

[3] C Michael Holloway; From Bridges and Rockets; Lessons for Software Systems;
Proceedings of the 17th International System Safety Conference, 1999.

Choosing a Test Modeling Language: A Survey

Alan Hartman1, Mika Katara2, and Sergey Olvovsky1

1 IBM Haifa Labs, Mt. Carmel Campus
Haifa 31905, Israel

{hartman,olvovsky}@il.ibm.com
2 Tampere University of Technology, Institute of Software Systems

P.O. Box 553, FI-33101 Tampere, Finland
mika.katara@tut.fi

Abstract. Deployment of model-based testing involves many difficulties
that have slowed down its industrial adoption. The leap from traditional
scripted testing to model-based testing seems as hard as moving from
manual to automatic test execution. Two key factors in the deployment
are the language used to define the test models, and the language used
for defining the test objectives. Based on our experience, we survey the
different types of languages and sketch solutions based on different ap-
proaches, considering the testing organization, the system under test, etc.
The types of languages we cover include among others domain-specific,
test-specific as well as generic design languages. We note that there are
no best practices, but provide general guidelines for various cases.

1 Introduction

A common view in the software development community is that there is a need
to raise the level of abstraction from a code-centric view to a model-driven
one. In Model-Driven Development (MDD), behavioral and structural mod-
els are treated as first class entities that are used to generate code automat-
ically. However, there is an ongoing debate whether to use generic modeling
languages (GMLs) or domain-specific (DSMLs) ones. GMLs, such as UML, are
advocated by the OMG’s Model-Driven Architecture (MDA) [1] initiative and
others. DSMLs are gaining popularity through industrial success stories that
report huge improvements in productivity [2], and the growing availability of
tooling support for DSMLs.

Unfortunately, this debate has not yet reached the area of testing. Based on
our experience from the model-based testing of industrial systems developed us-
ing code-centric practices, we think that the same debate needs to be extended
to cover testing. Moreover, another equally important and related question is
whether to model tests using a design language or a test-specific language. In
this respect, the driving force of the MDD community seems to be the ability to
generate applications, while test generation has been somewhat neglected. This
is in contrast with the new developments in the more traditional software devel-
opment process areas. In these, Test-Driven Development and other approaches
deeply rooted in testing are seen to increase productivity.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 204–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Choosing a Test Modeling Language: A Survey 205

From the viewpoint of black-box testing, the reasons for choosing between
the different types of test modeling languages may differ significantly from those
relevant to application and document generation. We believe the main differences
to be:

1. Developers generally need to introduce details of the target platform and
other implementation specifics – while testers may often disregard these
aspects during modeling.

2. Test models may focus more on ”user experience” and system boundary – as
opposed to the need to model precise internal system behavior by developers.

3. Developers usually have a better command of high level generic design lan-
guages, e.g. UML or SDL – whereas testers are better versed in the language
of user experience and requirements documentation.

In model-based testing, tests are generated automatically from models that
describe the behavior of the system under test (SUT) from a perspective of
testing. The usual goal is to make the SUT fail the test in order to find defects.

Even if we build the most sophisticated model-based test automation system,
there are still great difficulties in deploying the methodology and the tools (see,
for instance [3,4]). In fact, based on our experience, the leap from traditional
scripted testing to model-based testing seems as hard as moving from manual
to automatic test execution.

Two key factors in the deployment of model-based testing are the language
used to define the test models, and the language used for defining the test ob-
jectives. The test models describe the behavior of the SUT, whereas the test
objectives describe the behavior expected from the test generation software.
Whether visual or textual, these languages are used for the interaction between
the test automation system and its user. In many cases, we can translate exist-
ing test artifacts to test models ([5]), but even in this case, the aforementioned
languages play an important intermediate role. There are also other languages
used for defining test execution directives, or test set ups, but we consider these
somewhat less important from the deployment point of view.

In this survey we discuss types of test modeling languages to be used in order
to deploy model-based testing practices. The best answer is context-sensitive,
but we try to develop some guidelines for choosing between different approaches.
Since there is no clear division between the different language types, but rather
a wide spectrum, we concentrate on design vs. test-specific, as well as generic
vs. domain-specific languages.

The remainder of this paper is structured as follows. We briefly present the
theory and practice of model-based testing in Section 2. In Section 3, we dis-
cuss the differences between using a design language vs. a testing language for
test modeling. The discussion is continued in Section 4 concerning DSMLs and
GMLs. Section 5 contains further considerations on the subject from other points
of view. Finally, Section 6 presents some guidelines for decision making, and Sec-
tion 7 draws some conclusions.

206 A. Hartman, M. Katara, and S. Olvovsky

On-line?

Generate
Test Suite

Execute
Test Suite

Evaluate
Test Results

No

Select Next
Test Step

Execute Step on
Model & SUT

Evaluate
Result

Objectives
Achieved?

Report
Results

Yes

No

Test
Behavior

Test
Objectives

Yes

Fig. 1. MBT process: on-line vs. off-line testing

2 Model-Based Testing

In this section we briefly review the theory and practice of model-based software
testing, and its role in model-driven development.

2.1 Model-Based vs. Model-Driven Testing

In principal, any form of software testing can be seen as model based. The tester
always forms a mental model of the system under test before engaging in activi-
ties such as test case design. The term Model Based Testing (MBT) is applicable
when these mental models are documented and subsequently used to generate
tests, or to evaluate their results. The term Model Driven Testing (MDT) has also
been used frequently. Our interpretation of MDT is that it refers to a particular
style of model-based testing, inspired by the OMG’s Model Driven Architecture
(MDA) initiative. The underlying principles behind MDA (and hence MDT) are
the separation between platform specific and platform independent aspects of
the software, and the use of automated transformations to pass between different
levels of abstraction. In model-driven testing, this means that the testing model
is independent of the testing platform, and that a transformation is used to pass
from platform independent test cases to platform specific ones.

2.2 On-Line vs. Off-Line Testing

Model-based testing involves the following key activities: modeling the behavior
of the SUT, describing the test objectives, generating the test cases (using input
from the behavioral model and test objectives), running the test cases on the
SUT, and evaluating the test results to decide whether the testing is complete.
These activities are depicted in the upper part of Figure 1. Alternatively, espe-
cially when testing reactive systems, we may choose to execute the test steps
once they are generated as depicted in the lower part of Figure 1. In this so-called
on-line testing approach, test cases and suites are implicit and testing is seen as
a game [6] between the MBT tool and the SUT. To differentiate between these
two alternatives, the former scheme is referred to as off-line testing.

Choosing a Test Modeling Language: A Survey 207

The choice between these two approaches also affects the tool architecture.
In the on-line case, the test generation software is connected to the SUT using
an adapter that constantly translates inputs and outputs between the test au-
tomation system and the SUT. In the off-line case, the test cases (or suites) are
generated first and, often after a translation or transformation, are executed
at the SUT. An example of a tool implementing both approaches is Spec Ex-
plorer, which is currently used by several Microsoft product groups on a daily
basis [7].

2.3 Behavioral Modeling

This paper discusses the choice of appropriate languages to enable the afore-
mentioned activities, and therefore focuses on languages that are used to de-
scribe SUT behavior and test objectives. Behavioral models can take many
forms: diagrams (e.g., UML state diagrams), grammars, tables (e.g., decision
tables), control flow graphs, and others. They have two main functions: to de-
scribe the set of stimuli that can be applied to the SUT in any given situation
and to describe the possible responses to those stimuli. Models which do not de-
scribe the responses can still be useful for test generation. However, if an oracle
is not supplied, the success or failure of a test case must be determined by other
means.

Behavioral models for testing may be at different levels of abstraction. In
the most extreme case, test engineers will re-implement the entire SUT inde-
pendently in order to have an accurate test oracle. This is usually prohibitively
expensive. On the other hand, when the SUT is developed using a purely model-
driven approach, and the testing model simply reuses the implementation model,
the only part of the system being tested is the model transformation and not
the system itself. Model-based testing usually falls between these two extremes,
with a behavioral model at a higher level of abstraction than the implementa-
tion, but with significant portions of the testing model developed independently
of the design models.

When there is a significant difference between the abstraction level of the
behavioral model and the SUT, there is a need to describe the transformation
between abstract test cases and concrete test scripts at the implementation level.
This paper does not deal with transformation languages, but we note that this
is often a significant issue in the success or failure of model-based testing.

2.4 Test Objectives

Test objectives are often formulated in natural language; however, where test
generation is automated, the test objectives are required inputs for test gen-
eration algorithms. The test objectives may be couched in terms of the model
(model coverage), the implementation (code coverage), user experience (usage
profiling, use cases), or combinations thereof. Some of the early attempts at
model-based testing failed due to the complexity of defining test objectives for
a given automation system.

208 A. Hartman, M. Katara, and S. Olvovsky

The objectives may be described in a variety of ways. These reflect both the
variability of the objectives themselves and the varying sophistication level of the
users of model-based testing systems. In order to test compliance with a complex
requirement, the test engineer may be required to generate a long sequence of
related inputs with complicated constraints. Test objectives of this kind are
usually referred to as test purposes, and can be formally specified, for instance,
as sequence diagrams or state machines (TGV [8] and AGEDIS [9]). Less specific
test objectives may be expressed as coverage requirements on the model as in
Testmaster [10] and GOTCHA [11], on the input combinations as in Modelware
[12], or on other aspects of the test suite or on-line test execution trace. Some
tools take a very simplistic approach to the description of test objectives and
offer the engineer a choice of testing “levels”, with higher levels generating more
test cases and greater coverage while not involving the engineer in the details of
specifying objectives.

3 Design vs. Test-Specific Languages

The section covers the use of a design language for test modeling, and goes on
to discuss the benefits of using a test-specific language.

3.1 Using a Design Language

When using a design language, such as UML or SDL, for test modeling – there
are certain distinct advantages. Many tool vendors offer modeling tools for these
languages. In the case of UML, for instance, its visual notation has become an
industry-standard for software design.

Another advantage of the popularity of the language is the availability of
qualified people for designing the models. Some best practices have already de-
veloped around testing with UML, and some of these are codified into the UML
Testing Profile [13]. Moreover, consultation services are readily available.

A key step in any model-based testing methodology is the validation (e.g.,
formal inspection) of the test model by the developers and other application
stakeholders. This is a vital step in resolving specification ambiguities and syn-
chronizing the understanding of the requirements. Thus, it is important for devel-
opers to understand test models. A UML-based modeling language will employ
a vocabulary and approach that is native and easy to understand for software
developers and will obviate their need to study unfamiliar DSMLs.

The disadvantage of these languages and the supporting tools lies in the fact
that they are usually much more complex to learn and use than the alternatives.
Practitioners often complain about the perceived need to perform system design
twice – once for development and once for testing.

An example of adaptation and use of a design language can be found in the
AGEDIS project reports [9]. While the experiment reports found many positives,
all noted the complexity of the solution and the counter-intuitive modeling.

Choosing a Test Modeling Language: A Survey 209

3.2 Using a Test-Specific Language

Using a test-specific language can ease the deployment of the model-based ap-
proach, because testers do not need to learn UML or any other language whose
main purpose is not the support of testing activities.

TTCN-3 [14] is an example of a test-specific language that has been defined
solely for the purposes of test specification. Although the language concepts are
mostly inherited from the scripted protocol testing domain, the language maybe
suitable for expressing high level test models. Distinct advantages also include
the ability to specify tests both in textual and visual notations as well as the close
relationship with the UML Testing Profile. However, also in this case, one should
be careful to avoid the aforementioned problem of performing the system design
twice. There is a choice of tools that execute the specification by interpreting
the TTCN-3 code or by compiling it into some programming language.

In addition, different tool vendors have defined languages to be used with their
tools. Such languages are optimized for the tool at hand, and can be supported by
advanced editors and other utilities that ease the learning curve. These languages
are often proprietary, which increases risks of their adaptation. However, in many
cases they can still be used for model-based testing in conjunction with a higher-
level specification language and a source-to-source compiler.

4 Domain-Specific vs. Generic Language

Next, we compare domain-specific and generic approaches to test modeling.

4.1 Domain-Specific Languages

Due to the context-sensitive nature of testing, domain-specific approaches offer
many attractive advantages. The basic idea of using a domain-specific solution is
to introduce a language solely for the purpose of test modeling in the particular
domain at hand. This way, it is possible to tailor the modeling language for the
needs of the testers in this domain.

In most cases, there are no commercial tools available for modeling and gen-
erating tests in a particular domain, and custom made tools are needed. Firstly,
there needs to be a test design tool for modeling the tests using the domain-
specific language. Secondly, a translator (a compiler or an interpreter) is needed
from the language to the underlying test execution environment. Development
of such tools does not need to start from scratch; there are tools available for
developing domain-specific modeling environments, such as MetaEdit+ [15] or
XMFMosaic [16]. In principle, such tools may mitigate many of the risks and
difficulties associated with DSMLs. However, we have not found reports on the
use of such tools for testing.

Alternatively, a domain-specific layer of abstraction can be built on top of
an MBT tool that uses a generic language. This means developing a translator
from the domain-specific language to the generic one. As in any development of a

210 A. Hartman, M. Katara, and S. Olvovsky

source-to-source translator, the difficulty of this task depends on the differences
between the input and output languages.

As an example of the domain-specific approach, consider a DSML for testing
mobile phones through a graphical user interface (GUI) [17]. The purpose of the
DSML is to model the behavior of the phone user at a high level of abstraction.
The language consists of so-called action words [18], such as “send an SMS”,
“answer a call”, and “add a new contact”. The action words are used as transition
labels in test models given as LTSs (Labeled Transition Systems, i.e., simple
finite state machines). Because the underlying test automation system operates
at a lower level of abstraction, each action word is implemented by a sequence of
so-called keywords, which correspond to key strokes on the phone’s keyboard. A
keyword sequence implementing an action word is given in a separate LTS. The
component LTSs are composed automatically to obtain a final test model, which
in turn is used for generating the actual tests on-line through a commercially
available generic test automation system. Test objectives are stated using LTSs,
in conjunction with a textual coverage language in the top tier of the 3-tier test
model architecture [19].

Another, quite different, DSML-based approach is HOTTest [20] used for test-
ing database applications. There, tests are specified using a textual language,
based on the Haskell functional programming language. The textual test model
is first translated to an extended finite state machine from which the actual tests
are generated. It’s argued that the strong type system of the modeling language
makes it easier to introduce domain knowledge and capture domain-specific re-
quirements than using more conventional model-based testing approaches.

Genesys-Pro [21] is an example that uses DSMLs for testing areas other than
software. IBM uses this proprietary approach for verifying processor designs. The
tests are specified in test templates defined by an XML schema. The Genesys-
Pro test generator uses a constraint solver to create test cases after translating
the test template into a set of equational constraints. It has been reported that
it takes an experienced engineer from two to six months to learn to utilize the
full capabilities of the language. However, novice users can exploit the tool with
minimal learning time to create basic scenarios. Compared to their previous
approach, fewer defects escape into silicon despite the increased complexity of
the design.

4.2 Generic Modeling Languages

One of the advantages of using a generic test modeling language is the possibility
of model-based testing practitioners to move between different domains while
still enjoing similar modeling experiences. The look and feel and the basic (e.g.
UML-based) terminology will remain the same across different domains.

To support domain-specific modeling, UML provides a standard extension
mechanism called ”profiles”. Profiles are collections of stereotypes, tagged val-
ues and constraints usually defined as Object Constraint Language (OCL) ex-
pressions that can be defined to support modeling concepts found in different
domains. Depending on the profile, the result can be fundamentally different

Choosing a Test Modeling Language: A Survey 211

from the plain UML. There are several predefined profiles freely available from
OMG, including the aforementioned Testing Profile.

Although a generic approach should liberate us from any specific tool, in
practice, there are problems with exchanging models between tools. Moreover,
not all tools handle profiles (and possible conflicts between different profiles) in
standard ways, so we may be shackled to a specific tool capable of processing
the needed profiles.

Another problem with using profiles is that while they support incorporating
the concepts of the problem domain into the test models, they lack the ability to
hide unnecessary details. That is, when stereotyping a UML class to encapsulate
test data, we should be able to forget everything we know about classes, methods,
attributes, visibility etc. and concentrate on defining the test data. However,
even though we can define constraints to hide the superfluous details, the user
interface of the tool is not usually customizable to the same extent. The menus
remain cluttered with options having nothing to do with the task of defining test
data. This makes the work of the tester unnecessarily complex. Depending on
the background of the testing personnel, these kinds of usability problems can
hamper the deployment of a generic approach significantly.

An additional problem manifests itself when the domain is hard to define
through a UML profile. There are cases where defining stereotypes and tags is
simply not sufficent to describe the target environment. Extending UML through
other means is not frequently supported by UML tools and can hardly be sup-
ported by any infrastructure developed for previous UML profile-based solutions.
This problem may be either very hard or impossible to solve. Moreover, some
previously unseen interoperability problems could surface later.

Yet another issue is the SUT adapter/translator needed in generic solutions.
It is a software component that handles the transfer and translation of messages
between the test execution system and the SUT. Because the generic tools are
designed to work with any kind of SUT, they need to be adapted when deployed
in a new context. Depending of the type of the SUT, this component can be very
simple or more complex. In any case, it needs to be developed before the test
execution can be started and maintained as any other piece of software. There
do exist tool-specific adapters for certain domains, and there is work on generic
adapters for TTCN-3 [22]. However, the effort needed to develop this component
should be considered before choosing a generic tool.

On the application and document generation side of MDD, there is active
research to bridge the gap between DSMLs and UML profiles that will most
probably enchance model-based testing. For example, one interesting approach
[23] uses metamodels for defining translations between the two types of models.

5 Further Considerations

In this section, we cover additional aspects concerning the choice of a test mod-
eling language.

212 A. Hartman, M. Katara, and S. Olvovsky

5.1 Visual vs. Textual Languages

The question of whether to use visual or textual languages for test modeling
is somewhat orthogonal to the previous discussion, and is a matter of personal
background and taste of the testers. On the one hand, most testers would prob-
ably prefer a visual language for understanding a model. Model inspections and
reviews – especially the ones where both testers and designers are present – are
much easier with visual models. On the other hand, textual languages can be
very productive in test creation [20]. Another example of a textual language used
in industrial settings is Gotcha Definition Language, supported by the Gotcha
tool [11]. When developing large models with visual languages, one has to utilize
the abstraction and encapsulation mechanisms effectively in order to avoid clut-
tering the models. Modular development may be easier with a textual language,
at least for testers with some programming experience.

It is usually much harder to provide validation and simulation support for
visual models. Hence, debugging and refactoring may often be easier in the
case of textual languages. A language like TTCN-3, offering both types of no-
tations with a mapping between the two, is viewed as the best solution in this
respect.

There are also vast libraries of free and open source software, that facilitate
testing with Java, Python, or Perl. However, since these languages have not been
designed for modeling as such, the level of abstraction may be too low. If, for
instance, it takes several lines of code to model a test event, there is practically
no difference with traditional test scripting from the modeler’s point of view.
A better approach might be to use an existing programming language that has
been extended to support model-based testing such as in [24].

5.2 Commercial vs. In-House vs. Open-Source Tools

In principle, the domain-specific approach does not rely on commercially avail-
able tools as much as the generic approach. However, custom-made tool solutions
are often considered more risky than generic ones. This is especially true when
you need to decide on starting development of a new tool for a domain-specific
language before having any experience in the approach. On the other hand, a
well-known vendor of a commercial tool can become a reliable partner providing
support for many years – but prove to be too costly in the long term.

Custom made tools demand a heavy upfront investment, which is only justified
when they are used in numerous consecutive projects, for example in a product
family development. This could also tie the organization to a specific partner used
for tool development. An alternative is to develop an in-house tool. However,
many testing organizations lack such competencies or prefer concentrating on
their core business. Moreover, if the domain changes, the organization has to be
prepared to maintain the language and the associated tools. Depending on the
organization, this might be infeasible without outside help.

Naturally, the quality of the tools is always an issue; without industry-strength
tools, it is easy to fail in deployment, even with the best possible language. There

Choosing a Test Modeling Language: A Survey 213

is a much lower level of competition in domain-specific test tool market than in
the one for generic tools. Consequently, the organization has to make a careful
choice regarding the tool maker. We see that in many cases, the best solution is
an open-source tool, supported by a critical mass of organizations and individuals
with similar needs.

5.3 Proprietary vs. Standard Language

If an organization that uses a standard language, such as UML, SDL, or TTCN-
3, wishes to move to another tool, (e.g., for licensing or new functionality reason)
it should be possible to preserve the investment in existing models due to the
standard nature of language. Thus, a standards-based approach for test modeling
provides freedom in the choice of tools.

Another example of benefits gained by using standard languages is the TTCN-
3 SIP Test Suite [25] for testing the SIP protocol [26]. SIP, the Session Initia-
tion Protocol, is a signaling protocol for Internet services, such as conferencing,
telephony, presence, events notification and instant messaging. By utilizing a
standard test suite for conformance testing of a protocol implementation, many
interoperability and other problems can be resolved in the early phases of devel-
oping SIP protocol implementations. Without using a standard testing language,
it would be very difficult to benefit from the standard test suite.

However, since one size rarely fits all, a custom made proprietary solution
might be more favorable because of the anticipated improvements in productiv-
ity. If the testing organization owns the proprietary language, which is often the
case with DSMLs, it can govern the language and the associated tools without
outside interference. On the other hand, if the language is owned by some other
organization, possibly a partner, a joint understanding about the development
of the language and the tools is needed.

6 Pitfalls and Solution Considerations

SUTs are not equal with regards to testing difficulty. In the simplest case, there
are test interfaces designed to make testing easier. In a more difficult case, test
execution has to be done through a GUI, using text recognition, to convert
bitmap characters to text strings. There is also a vast difference in testing control
vs. data intensive systems, concurrent vs. single threaded ones, or deterministic
vs. non-deterministic ones. Obviously, it is impossible to develop best practices
covering all the different SUT types.

The decision to select a language should be based on business objectives.
We believe that the major consideration is to weigh the trade-offs between the
solution’s long-term risks and development/adoption costs against the ease-of-
use, provided by that solution. In the following section, we cover some pitfalls
and solutions for the less obvious long-term risk factors.

214 A. Hartman, M. Katara, and S. Olvovsky

6.1 Testing Solution Language and Tooling Choice Pitfalls

The pitfalls we identified concerning language and tooling choice:

Domain slippage. Over time, the domain that requires testing may change,
standards on which it is based may evolve and new technologies may appear.
The changes may not be drastic enough to demand a totally new solution.
Even worse, they may be gradual, requiring constant updates to the mod-
eling language. DSMLs present a higher risk, since they are specific to the
addressed problems.

Underestimating effort needed in language definition. Asdomain-specific
languages gain popularity for application generation, there is a danger that
such a solution may be adapted for testing leading to low solution quality. De-
signing a language is a difficult task that needs expert knowledge and should
not be underestimated.

Language ownership. If the adopting organization does not own the language
definition, it may find over time that the language changed in ways that are
not compatible with the organization’s goals. While it is not a problem in
itself, since the organization already owns the required tools, it may cre-
ate significant difficulties. For example, support for existing tools may be
discontinued, hiring may become a problem, acquiring new licenses may be
impossible, etc. Language definition ownership and the use of GMLs can
reduce the risk. Proprietary standards owned by tool vendors are high risk.

Tool lock-in. Dependence on a specific tool may become a problem. Support
costs may skyrocket, new licenses may become extremely expensive and tool
vendors may become less responsive to the organization’s needs – e.g. support
of new features in future releases. The problem remains more severe for
DSMLs, even though proprietary storage formats and the absence of export
capabilities for some GMLs may cause similar problems.

Development process change. A change in the development process may
make the chosen testing tools extremely inappropriate. For example, adopt-
ing automatic workflow systems to handle bug tracking, requirements man-
agement and version control – all bundled together to achieve traceability
– may require tools that can work within the process management system.
Small vendors (or internal solutions) often present higher risk.

Unsustainable vendors. Many systems need to be maintained and supported
for decades. A small vendor (or even a large one) may become unavailable for
support or tool/language updates over the years. The choice of non-standard
DSMLs, and small vendors (whose customer base won’t be large enough to
provide migration paths by competitors) increase the risk.

Solution complexity. Many MBT solutions are technologically complex when
compared to traditional testing approaches. The organization might not be
able to find professionals with the required background, nor educate a large
enough number of its own testers. The problem might well remain hidden
until the market for software developers heats up. In such a case, top testers
often move on to development positions and the organization may find itself
unable to substitute them. GMLs and design languages are more risky due
to their higher complexity.

Choosing a Test Modeling Language: A Survey 215

SUT domain
simplicity

Lack of in -house
test tooling support

SUT domain
instability DSMLs

Testing staff
qualifications

Fig. 2. DSML vs. generic solution

6.2 Solution Guidelines for Different Organization and Project
Types

Figure 2 summarizes our view on the strengths of the DSML approach, which is
perceived to challenge the more generic approaches. DSMLs are good in captur-
ing complex domains, and require only domain skills from their users. However,
in-house tool support is probably needed and problems can occur in case of do-
main changes. If the domain is simple and the required skills exist in the testing
staff, a more generic solution may be more favorable. Such an approach is seen
more robust in the case of domain changes. In addition, tools and the associated
services can be bought from third parties.

Below, we provide some general guidelines that take into consideration differ-
ent factors. The guidelines are listed in the order of importance but should not
be considered to be mutually exclusive:

– An organization lacking the infrastructure to develop and support tools in-
house and is possibly unable to educate testers: Reliable large vendor solu-
tion, GML and probably test-specific language. We believe that the existence
(or lack thereof) of an in-house team to develop/support testing solutions
is possibly the single most important factor in choosing a solution. Good
support becomes paramount, domain slippage can cause high costs when
handled by external tool vendors (DSML risk), language evolution may ren-
der an external DSML solution unusable, and external education and support
for testers mean that an easy to use language (test specific) is preferable.

– An organization that is either developing point-in-time solutions for many
domains (e.g., services or outsourcing), or has a wide range of products in
different domains: GML. The first case means that the high risk of adopting
new solutions (DSML) is repeated for each new project, and the cost is not
amortized over long term/multiple projects. GML, on the other hand, means
a stable testing methodology and the reuse of tester’s expertise. The second
case means that GML solutions allow easy reassignment of testers between
testing teams, without requiring re-education.

– Big, long term projects in a stable domain (e.g. Air Traffic Management Sys-
tems, systems for government services, defense or financial organizations):
An in-house solution, with a DSML, test-specific and possibly even inter-
nally owned language. A second (but worse) alternative is a widely accepted

216 A. Hartman, M. Katara, and S. Olvovsky

public standard language with either an open source solution or a set of im-
plementations by different vendors. Preventing vendor lock-in is extremely
important in this case, both due to possibly escalating costs, and the risk
of loss of tool/language support over the project lifecycle. This is best ad-
dressed, by an in-house solution, but can be prevented by adopting a widely
accepted language. However, domain slippage and language evolution are
better addressed by an in-house solution. An additional justification for an
in-house solution is that projects of this type are usually run by a large
organization that has the skills and resources needed to run a language def-
inition/maintenance project. An investment in a DSML development could
be amortized over the long life cycle of the project. The investment in a test-
specific language, as well as dedicating a testing team to exclusively support
the project for years, limits the risk and improves the quality of these (often
safety critical) systems. Thus, specialization of the personnel is not an issue.
Ownership of the language is preferable and its cost (in hiring language def-
inition experts) acceptable because the language should support the project
needs for a long term. An organization may benefit from publicizing the
language and making it a de-facto industry standard in the area.

– An organization using developers for component/functional/system testing:
Design language. Lower education costs for testers, who are already familiar
with the language and only need to learn the new tools, easier buy in by
these ”testers”, and less opposition to perform testing tasks (which are often
disliked by developers).

– An organization lacking advanced testers: Test-specific language. An organi-
zation like this will struggle to adopt MBT in any case. It should be carefully
considered whether a more conventional solution would serve the business
goals better or not. To succeed the organization must adopt easy-to-use tools
and languages that can be mastered by its personnel.

– An organization that uses domain experts to create testing scenarios: DSML.
Reduces the education costs and increases the chances that domain experts
will be ready to create testing scenarios. These experts are often either sci-
entists or expert engineers, and are usually not keen on participating in
testing-related activities. The choice will also decrease the time they spend
on the activities, and reduces the high cost of these specialists.

– An organization that relies on internal experts to adopt/provide and in-
ternally support best practice solutions (e.g., advanced start-up compa-
nies): Open source tools, standardized or internally created languages (likely
DSMLs). Open source gives you the possibility to make necessary changes
to the tools when needed. Experts in testing tools (as in other areas of com-
puter sciences) often prefer the flexibility of open source solutions and the
ability to both provide their solution to a wide community and cooperate
with other experts in their day-to-day work. Such experts are hard to find
and expensive to hire. They are usually motivated not just by high com-
pensation (they can find employment anywhere), but mainly by their work
definition. Thus, open source and open solutions are usually preferable, since
this keeps these people satisfied and makes them more efficient.

Choosing a Test Modeling Language: A Survey 217

7 Conclusions

In this paper we discussed the choice between different types of languages for
test modeling. We also provided some guidelines to help in the decision between
the alternatives. We believe this decision may have far-reaching consequences in
the deployment of model-based practices to a testing organization.

As noted by the authors of [27], there are no best practices in software testing.
When selecting between different types of languages, the right choice depends on
various aspects. If, for instance, two different organizations need to use common
languages and tools for testing, the choice of a test modeling language may be
governed by numerous reasons that are less than obvious.

Public case studies on deployments using various approaches are needed. How-
ever, since testing organizations, and especially tool vendors, are usually not
willing to share their experiences in unsuccessful projects, the published eval-
uations are presumably biased towards success stories. References to successful
deployments are important, but because of the context-sensitive nature of the
problem, they should not be over-emphasized in decision making. Thus, we think
that the debate between the different approaches needs to be continued.

Acknowledgments

The work of the first and third author was partially supported by the MODEL-
WARE project. MODELWARE is a project co-funded by the European Commis-
sion under the “Information Society Technologies” Sixth Framework Programme
(2002-2006). Information included in this document reflects only the authors’
views. The European Community is not liable for any use that may be made of
the information contained herein. The work of the second author was partially
funded by Nokia Foundation.

References

1. OMG: Model Driven Architecture. Available at http://www.omg.org/mda/ (2006)
2. Domain-Specific Modeling Forum: DSM case studies and examples. Available at

http://www.dsmforum.org/cases.html (2006)
3. Robinson, H.: Obstacles and opportunities for model-based testing in an industrial

software environment. In: Proceedings of the 1st European Conference on Model-
Driven Software Engineering, Nuremberg, Germany (2003) 118–127

4. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial context
– Motorola case study. In: Proceedings of MoDELS 2005. Number 3713 in Lecture
Notes in Computer Science. Springer (2005) 476–491

5. Hartman, A., Kirshin, A., Olvovsky, S.: Model driven testing – as an infrastructure
for custom made solutions. In: Proceedings of the 4th Workshop on System Testing
and Validation (STV’06), Potsdam, Germany (2006)

6. Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W.: Optimal
strategies for testing nondeterministic systems. In: ISSTA’04: Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and Analysis,
Boston, MA, USA, ACM (2004) 55–64

http://www.omg.org/mda/
http://www.dsmforum.org/cases.html

218 A. Hartman, M. Katara, and S. Olvovsky

7. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes,
M.: Testing concurrent object-oriented systems with Spec Explorer. In: Proceed-
ings of Formal Methods 2005. Number 3582 in Lecture Notes in Computer Science.
Springer (2005) 542–547

8. Jard, C., Jéron, T.: TGV: theory, principles and algorithms – a tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
STTT 7 (2005) 297–315

9. Hartman, A.: AGEDIS project final report. Available at http://www.agedis.de/

documents/d423 3/FinalPublicReport(D1.6).PDF (2004)
10. Apfelbaum, L., Doyle, J.: Model based testing. Software Quality Week (1997)
11. Farchi, E., Hartman, A., Pinter, S.: Using a model-based test generator to test for

standard conformance. IBM Systems Journal 41 (2002) 89–110
12. Modelware: Modelware project homepage. Available at http://www.

modelware-ist.org (2006)
13. OMG: UML Testing Profile. Available at http://www.omg.org/technology/

documents/formal/test profile.htm (2006)
14. ETSI: TTCN-3 homepage. Available at http://www.ttcn-3.org (2006)
15. MetaCase: MetaEdit+ homepage. Available at http://www.metacase.com (2006)
16. Xactium: XMFMosaic homepage. Available at http://www.xactium.com (2006)
17. Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T., Satama, M.: Towards

deploying model-based testing with a domain-specific modeling approach. In: Pro-
ceedings of TAIC PART - Testing: Academic & Industrial Conference, Windsor,
UK, IEEE Computer Society (2006) 81–89

18. Buwalda, H.: Action figures. STQE Magazine, March/April 2003 (2003) 42–47
19. Kervinen, A., Maunumaa, M., Katara, M.: Controlling testing using three-tier

model architecture. In: Proceedings of the Second Workshop on Model Based
Testing (MBT 2006), ENTCS 164(4) (2006) 53–66

20. Sinha, A., Smidts, C.: HOTTest: A model-based test design technique for enhanced
testing of domain-specific applications. ACM Trans. Softw. Eng. Methodol. 15
(2006) 242–278

21. Behm, M., Ludden, J., Lichtenstein, Y., Rimon, M., Vinov, M.: Industrial expe-
rience with test generation languages for processor verification. In: Proceedings
of the 41st Annual conference on Design Automation (DAC-04), San Diego, CA,
USA, ACM (2004) 36–40

22. Hyrkkänen, A.: General purpose SUT adapter for TTCN-3. Master’s thesis, Tam-
pere University of Technology, Department of Information Technology (2005)

23. Abouzahra, A., Bézivin, J., Didonet Del Fabro, M., Jouault, F.: A practical ap-
proach to bridging domain specific languages with UML profiles. In: Proceedings
of the Best Practices for Model Driven Software Development at OOPSLA’05, San
Diego, California, USA (2005)

24. UniTesK: UniTesK tools homepage. Available at http://www.unitesk.com (2006)
25. ETSI: Conformance test specification for SIP – part 3: Abstract test suite (TTCN-

3 code). Available at http://portal.etsi.org/docbox/EC Files/EC Files/

ts 10202703v030101p0.zip (2003)
26. IETF: IETF RFC 3261 – SIP: Session Initiation Protocol. Available at http://

www.ietf.org/rfc/rfc3261.txt (2002)
27. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing. Wiley

(2001)

http://www.agedis.de/documents/d423_3/FinalPublicReport(D1.6).PDF
http://www.agedis.de/documents/d423_3/FinalPublicReport(D1.6).PDF
http://www.modelware-ist.org
http://www.modelware-ist.org
http://www.omg.org/technology/documents/formal/test_profile.htm
http://www.omg.org/technology/documents/formal/test_profile.htm
http://www.ttcn-3.org
http://www.metacase.com
http://www.xactium.com
http://www.unitesk.com
http://portal.etsi.org/docbox/EC_Files/EC_Files/ts_10202703v030101p0.zip
http://portal.etsi.org/docbox/EC_Files/EC_Files/ts_10202703v030101p0.zip
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt

Making Model-Based Testing More Agile:
A Use Case Driven Approach

Mika Katara and Antti Kervinen

Tampere University of Technology
Institute of Software Systems

P.O. Box 553, FI-33101 Tampere, Finland
firstname.lastname@tut.fi

Abstract. We address the problem of misalignment of artifacts developed in ag-
ile software development projects and those required by model-based test gener-
ation tools. Our solution is domain specific and relies on the existence of domain
experts to design the test models. The testers interface the test generation systems
with use cases that are converted into sequences of so called action words corre-
sponding to user events at a high level of abstraction. To support this scheme, we
introduce a coverage language and an algorithm for automatic test generation.

1 Introduction

Agile software development practices are rapidly gaining wide popularity. From the
testing point of view, this can be seen as a step forward since testing is no longer seen
as the last and the least respected phase of software development projects. Instead, tests
are driving the development, and automated tests are replacing some design artifacts and
documents. However, finding the balance between agile and plan-driven development
is a difficult managerial task that needs to be made on a case-by-case basis [1].

Agile methods are lifting the status of testing by advocating automated unit and
acceptance tests. However, conventional tests are limited in their ability to find defects.
Test cases are scripted as linear and static sequences that help in regression testing but
may prove inadequate in their coverage and maintainability. On the other hand, tests
generated automatically from models can introduce the necessary variance in tested
behavior or data for better coverage. Moreover, thanks to the higher level of abstraction,
the maintenance of test models can be easier than test cases crafted by hand.

However, there is a mismatch between the artifacts needed in automatic test genera-
tion and those usually created in agile development projects. The models created in the
latter are rarely detailed enough to be used as the basis for generating tests, since precise
modeling is not seen to add any value [2]. An easy answer to this problem would be to
use model-based test generation only when detailed models and heavy documentation
are produced in any case, for example, in projects developing safety-critical systems.

We think that model-based testing needs to be adapted to make it more suitable for
agile projects by developing highly automated and user-friendly tools. There are oppor-
tunities to introduce model-based practices to increase test coverage especially when
quality is essential, for instance in development of high-volume consumer products.

E. Bin, A. Ziv, and S. Ur (Eds.): HVC 2006, LNCS 4383, pp. 219–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

220 M. Katara and A. Kervinen

Furthermore, the importance of maintainability and reusability of artifacts grows when
working in a setting such as product family development. However, the right balance
should be found between what should be modeled and what should not.

In our previous work [3,4,5] we have introduced a methodology for model-based
graphical user interface (GUI) testing in the context of Symbian S60. Symbian S60 is
an operating system and a GUI platform for mobile devices, such as smart phones, that
has over 50 million installations [6]. Our methodology is built around a domain-specific
modeling language consisting of so called action words and keywords [7,8] that describe
user actions at a high level of abstraction as well as their lower-level implementations,
respectively. Action words are used as transition labels in labeled transition systems
(LTSs) modeling the behavior of the user of the phone. They are refined to sequences
of keywords with an automatic model transformation. For example, an action word for
taking a picture with the phone is translated to the sequence of key strokes that conduct
the action on the system under test (SUT).

Based on our experiences with the prototype implementation of our testing tools,
the biggest obstacles in the practical use of our methodology concern the creation of
the action word model. Moreover, even though the domain-specific language can help
domain-experts without programming skills to build models, there is no clear picture on
the relationship between the models created for testing, and other artifacts, especially
the requirements and design documents. Another related question is about requirements
coverage: “How can we know when some requirement has been covered by the gener-
ated tests?”

In this paper, we tackle the above problems. Agile development should be supported
by easy-to-use tools that can show immediate added value, for instance, by finding
serious defects. Thus, our approach is highly automated in a way that all the complexity
associated with model-based test generation is hidden from the tester. To achieve the
high level of automation, the approach is domain-specific. However, a similar approach
can be developed also for other domains.

In more detail, we build our solution on use cases. Since our domain is quite re-
stricted, experts can handle the actual test modeling while testers define test objectives
based on use cases. On the one hand, use cases should be familiar to most system level
testers. On the other hand, use cases can help us to solve one re-occurring problem in
model-based testing, i.e., how to restrict the set of generated tests.

The structure of the remainder of the paper is as follows. In Section 2 we introduce
the background of the work. Our contributions on adapting model-based testing to agile
development are presented in Section 3. This includes the definition of an improved cov-
erage language that can be used in use case driven testing and the associated algorithm
for test generation. Related work is presented in Section 4 and Section 5 concludes the
paper with some final remarks.

2 Background

To present the background of our work briefly, we first review the role of requirements
in agile software development. Second, we describe our domain-specific test automa-
tion methodology including the so-called 3-tier test model architecture [4].

Making Model-Based Testing More Agile: A Use Case Driven Approach 221

2.1 Role of Requirements in Agile Development

Requirements form the foundation upon which the entire system is built. One of the
most import roles of testing is to validate that the system meets its requirements. How-
ever, we see the role of requirements in agile development quite different from con-
ventional plan-driven projects. In the latter case requirements are documented in the
beginning of the project. Any changes to requirements in later stages of the develop-
ment should be avoided, due to the high costs involved in rework. In the former case,
changes to requirements are considered to be inevitable. In XP [9] for instance, simple
descriptions of requirements are documented as “user stories” that are used mainly for
release planning. The actual implementation should be based on the face-to-face inter-
action with the customer or the end user. While the costs of changes can also be high
in agile development, the increased customer satisfaction is seen as more important and
also more cost effective in the course of the whole project.

Agile Modeling [2] is an extension to more code-centric agile methods, such as XP. It
suggests developing models that can help to design and document the implementation,
quite similarly to plan-driven approaches but emphasizing certain agile principles and
light weight. Requirements can be captured using UML like diagrams or simple textual
format, for instance.

Use cases are one of the most popular methods of capturing requirements in in-
dustrial projects. Whether textual or visual, they can be written with various levels of
formality, depending on the criticality of the system under development. However, in
Agile Modeling, the use cases should contain just enough information to communicate
the idea and no more. Instead of developing all the use cases in the beginning, it is sug-
gested that they should be defined in iterations and refined incrementally when needed
just like other artifacts developed during the project.

The definition of a use case varies in the literature. Here we will use the informal use
case format, as defined in [2]. It includes three elements: name, identifier and the basic
course of action, which is a sequence of event descriptions corresponding to the high-
level interaction between the user and the system. We will use the following informal
use case as a running example:

Name: Alice asks Bob to meet for lunch
Identifier: UC1
Basic course of action:

1. Alice sends Bob an SMS asking him to meet for lunch.
2. Bob replies by sending a multimedia message containing a picture of a bumper

taken at a traffic jam and a text ”I will call you when I’ll get there”.
3. After a while, Bob calls to Alice, but she is talking to Carol so the line is busy.
4. After a few minutes Alice calls back to Bob and they agree to meet at the cafeteria.

All use cases are not equally important. In order to cope with this, some risk-based
testing practices [10] should be deployed: the use cases must be prioritized based on
some formal risk analysis or customer intuition. From the testing point of view, the
source of the priority is less important; what is important is that the tests should be
executed in the priority order. This way it can be ensured that at least the most important

222 M. Katara and A. Kervinen

Test Control Tier

Action Tier: Action Machines

Keyword Tier : Refinement Machines

Adapter and SUT

Test model selection, coverage objectives Test finished, verdict

Execute high level action Execution finished

Execute event Execution status: success or failure

Fig. 1. 3-tier model architecture

risks have been covered if testing needs to be discontinued for some reason. However,
because there is always a risk that the risk analysis has been done poorly, it is suggested
to aim at covering each use case at least in some detail.

2.2 Domain-Specific Test Modeling

Our approach to domain-specific test modeling using keywords and action words is
built around the 3-tier model architecture, consisting of control, action and refinement
machines each in its own tier (see Figure 1). The machines are LTSs that model the
behavior of the user of the SUT. In order to support testing of different products of the
same product family, a high-level functionality is separated from the GUI events. This
facilitates the reuse of action machines with SUTs that support the same operations on
different kind of GUIs. Refinement machines in the Keyword tier are used for refining
the action words in action machines to sequences of executable events in the GUI of
the SUT. To obtain an executable test model, we compose action machines with their
corresponding refinement machines, i.e., the machines on the two lowest tiers in the
model architecture.

For execution, we use an on-line approach, i.e., we run tests as we generate them.
The tests are executed using a commercial Windows GUI test automation tool running
on a PC and an adapter tool connecting the PC to the SUT. A separate log file is used
for re-running the test when, for example, debugging.

In the following, the three tiers are presented (see [4] for more details).

Keyword tier. In Figure 2 CameraRM is a refinement machine for a Camera appli-
cation. In its initial state (the filled circle) the machine refines high level actions for
starting the application (awStartCam) and for verifying that the application is running
(awVerifyCam).

Keywords are used for generating input events to the SUT as well as making obser-
vations on the SUT. A test oracle is encoded in the model. During the test run, execution
of a keyword always either succeeds or fails. For example, executing kwVerifyText ’Cam-
era’ succeeds if string “Camera” is found on the display and fails otherwise. Sometimes

Making Model-Based Testing More Agile: A Use Case Driven Approach 223

CameraAM
awStartCam

awVerifyCam

awQuit

awVerifyNoCam

awTakePhoto awVerifyPhoto
awDeletePhoto awCreateMMS

awVerifyMMS

awCancelMMS

S
leepT

S

W
ak

e T
S S

leepT
S

Wake TS S
leepT

S

Wake TS

Allow UseImage

CameraRM
start awStartCam

end awStartCam

kwPressKey SoftRight

kwPressKey SoftLeft

kwSelectMenu Camera

start awVerifyCam

kw
V

er
ify

Te
xt

’C
am

er
a’

end awVerifyCam

Fig. 2. Action machine and refinement machine

failure is allowed or even required. Allowed results are expressed in the labels of tran-
sitions; an error is found if the status of an execution does not match any of these.

In a test model library, the keyword tier consists of a number of machines refining
several action words. Each of the refinement machines interacts only with one action
machine. Usually, the refinement corresponds to a simple macro expansion: an action
word is always implemented with the same sequence of keywords. However, in some
cases the sequence may vary depending on the action words executed earlier. For exam-
ple, the keyword implementation of “activate Camera application” could be different,
depending on whether or not the application is already running in the background.

Action tier. Action machines model concurrently running applications. The machines
contain action words whose executions can be interleaved to the extent defined in this
tier. In a Symbian S60 GUI context, it is sufficient to define few dozens of keywords.
However, the number of action words is required to be much higher.

Interleaving the executions of the action machines is an essential part of our domain-
specific modeling approach. Symbian S60 applications should always be interruptible:
user actions, alarms, received phone calls and messages may stop the ordinary execu-
tion of the application at any time. Obviously, it is hard for developers to ensure that
applications behave well in every case. The number of cases that should be tested is far
beyond the capabilities of conventional testing methods, whether automated or not. To
facilitate the creation of test models where the action machines are automatically inter-
leaved, the concepts of running and sleeping action machines have been introduced.

There are two kinds of states in action machines: running and sleeping states. An
action word can be executed only when the corresponding machine is running, i.e., it is
in a running state. The interleaving mechanisms guarantee that there is always exactly
one action machine in a running state. In the beginning of a test run, the running action
machine is a special task switcher.

CameraAM in Figure 2 is a simple action machine for testing the Camera applica-
tion. The machine tests the following functionality: starting the camera application
(awStartCam), taking a picture (awTakePhoto), and creating a multimedia message con-
taining the picture (awCreateMMS). The three dotted states are sleeping states, the left-
most of which is the initial state. The application is started when the machine wakes up

224 M. Katara and A. Kervinen

for the first time. After that, it is verified that the application actually started. Then, the
test guidance algorithm makes a choice between taking a photo, quitting the application,
and entering a sleeping state.

At this tier, there are two communication mechanisms between the machines. The
first one controls which action machine is currently running using primitives SleepTS,
WakeTS, SleepApp and WakeApp. These represent putting to sleep and waking up an appli-
cation with a task switcher (TS) or directly within another application (App). The other
mechanism is for exchanging information on shared resources between the machines:
there are primitives for requesting (Req) and giving permissions (Allow). The former
can be executed only between running states and the latter between sleeping states.

Test control tier. The test control tier is used for defining which test models to use and
what kind of tests to run in which order. Naturally, there are different needs depending
on whether we are performing a quick test in conjunction with a continuous integra-
tion [11] cycle or chasing the cause for some randomly appearing strange behavior.

We have initially identified three different testing “modes” that should be supported
in an agile project. Firstly, smoke tests are needed for verifying that a build has been
successful. Such verification step can be included in the test run for each continuous
integration build, for instance. However, we do not restrict to a static sequence of tests
such as in conventional test automation. Instead, we may set limits on the duration of
the test and explore the test model on a breadth-first fashion within those limits.

Secondly, we need to be able to cover certain requirements. Goals for testing projects
are often set in terms of requirements coverage; for example, at least requirements R1,
R2 and R4 should be tested. Thirdly, we would like to do serious bug hunting. In this
case our primary motivation is not to cover certain requirements or to stop within five
minutes. Instead, we try to find as many defects as possible. However, requirements can
be used to guide the test generation also in this mode. Furthermore, the coverage data
obtained in the previous test could be used to avoid retesting the same paths again.

It is also in this tier where we define which machines are composed into an exe-
cutable test model. Obviously, composing all the machines is usually not necessary. In
cases where we use requirements to limit the test generation, we include in the compos-
ite model only those machines that are needed to cover the requirements. However, in
smoke testing mode, the machines required to be composed should be explicitly stated:
machines for the Camera, Messaging and Telephony applications, for example. More-
over, within the Symbian S60 domain, the task switcher machine is always included in
the executable test model. Since the state-space explosion can occur when composing
test models by interleaving executions of a number of machines, instead of generating
the composite test model at once, we do the parallel composition on the fly.

3 From Informal Use Cases to Model-Based Tests

This section presents the process of use case driven test generation in conjunction with
the associated coverage language and test generation algorithm.

Making Model-Based Testing More Agile: A Use Case Driven Approach 225

Select Next
Test Step

Execute Step on
Model & SUT

Evaluate
Result

Objectives
Achieved?

Yes

No

Use Cases
Action and
Keyword
Models

Test
Reports

Executable
Test Model

Coverage
Objectives

Fig. 3. Use case driven testing

3.1 Use Case Driven Testing

Organizations developing software in an agile manner prefer testing tools that are easy
to use, can find defects effectively, and integrate seamlessly with the agile processes.
In the following we will concentrate on the first and the last of these requirements.
Firstly, the sophisticated algorithms etc. should be hidden as much as possible from the
tool users. Secondly, the input of the tools should be something that is produced in the
project anyway.

We think that it is hard to get average testers to build test models. Thus, we devel-
oped a visual and easy-to-grasp domain-specific language comprising LTSs and action
words. However, in a strict domain such as ours, the test models themselves could be
developed by a third party. Alternatively, the adapting organization could train one or
two dedicated experts to build test models using requirements, design documents, etc.
In both cases, the basic test model library consisting of the fundamental models, such
as machines for calling, contacts, calendar and camera in our case, may be developed
with a reasonable effort. Moreover, the library could be extended incrementally based
on the new requirements to be tested.

We suggest that the testers should primarily interact with the test automation system
through coverage objectives that drive the test generation. To achieve this, we must
link the informal use cases to coverage objectives and define test generation algorithms
based on the objectives. Moreover, there should be a clear mapping between the use
cases and the tests; testers need to be able to report test coverage in terms of use cases.
This scheme is depicted in Figure 3.

As discussed in Section 2.1, we make the following assumptions about the require-
ments used as input to the test automation:

1. The requirements are stated as informal use cases including a name, an identifier
and the basic course of actions.

2. The uses cases have been prioritized, for instance, based on a risk analysis.

The tester maps the events listed in the basic course of actions to action words. For
instance, a spreadsheet can be used to list the action words corresponding to each event.
As discussed above, if there are no predefined action words corresponding to some
event, the test model library needs to be extended with new models. For traceability and

226 M. Katara and A. Kervinen

Related use case: Alice asks Bob to meet for lunch
Use case identifier: UC1
Action word sequence:

1. Alice.Messaging.awCreateSMS “Would you like to meet for lunch?”
2. Bob.Messaging.awReadSMS

3. Bob.Camera.awTakePhoto
4. Bob.Messaging.awCreateMMS “I will call you when I’ll get there”
5. Alice.Messaging.awReadMMS

6. Alice.Contacts.awSelectCarol
7. Carol.Telephone.awAnswerCall
8. Bob.Contacts.awSelectAlice
9. Bob.Contacts.awVerifyBusy

10. Carol.Telephone.awHangUp

11. Alice.Contacts.awSelectBob
12. Bob.Telephone.awAnswerCall
13. Bob.Telephone.awHangUp

Fig. 4. An action word sequence based on use case UC1

comprehensibility, the action word sequence is annotated with the use case name and
identifier. The priority affects the test guidance, so it must be stated as well.

Based on the above, our running example would result in the action word sequence
presented in Figure 4. The action words are chosen from a model consisting of three
actors: Alice, Bob, and Carol. When running in the requirements coverage mode, for
instance, the sequence in Figure 4 can be automatically expanded based on the models
referenced in the names of the action words. An expanded sequence is presented in
Figure 5. From the intermediate steps the tester can make sure that there is a sensible
way to execute the sequence in the model.

1. Alice.Messaging.awCreateSMS Msg1
Alice.Messaging.awVerifySMS
Alice.Messaging.awOpenRecipientList
Alice.Messaging.awChooseBob
Alice.Messaging.awSendSMS

2. Bob.Messaging.awReadSMS

Bob.Camera.awStartCam
Bob.Camera.awVerifyCam

3. Bob.Camera.awTakePhoto
4. Bob.Messaging.awCreateMMS Msg2

Bob.Messaging.awVerifyMMS
Bob.Messaging.awOpenRecipientList
Bob.Messaging.awChooseAlice
Bob.Messaging.awSendMMS

5. Alice.Messaging.awReadMMS

Alice.Contacts.awOpenAddressBook

6. Alice.Contacts.awSelectCarol
Alice.Contacts.awDialSelected

7. Carol.Telephone.awAnswerCall
Bob.Contacts.awOpenAddressBook

8. Bob.Contacts.awSelectAlice
Bob.Contacts.awDialSelected

9. Bob.Contacts.awVerifyBusy
10. Carol.Telephone.awHangUp

Alice.Contacts.awOpenAddressBook

11. Alice.Contacts.awSelectBob
Alice.Contacts.awDialSelected

12. Bob.Telephone.awAnswerCall
13. Bob.Telephone.awHangUp

Fig. 5. A detailed action word sequence generated from the model

Making Model-Based Testing More Agile: A Use Case Driven Approach 227

3.2 Coverage Language

The action word sequences are processed further using the coverage language that
will be introduced next. The design of the language has been guided by the following
principles:

1. Syntax should be concise and readable.
2. Elements can be required to be covered in a free order or in some specific order.
3. There can be alternative coverage criteria.
4. Criteria can relate to both test environment and test model. A test criterion can be

fulfilled, for example, if the test run has already taken too long, if some resources
in the test system are running low, or if some elements in the test model are covered
in sufficient detail.

5. Execution paths in the test model must not be restricted by the language. We keep
the roles of the coverage criteria and the test model separate. The test model (alone)
specifies what can be tested, whereas the coverage criteria specifies the stopping
condition for test runs.

A coverage criterion (CC) is either an elementary criterion (EC) or a combination of
two other coverage criteria:

CC = EC |(CC (and |or | then)CC)

The operators that combine the criteria have the following meaning

and requires that both coverage criteria are fulfilled in any order and or simul-
taneously. (Design principle 2, free order.)

or requires that at least either one of the criteria is fulfilled. (Design princi-
ple 3.)

then requires that the second criterion is fulfilled after the first one. (Design
principle 2, a specific order.)

Note that A then B does not require that B must not be fulfilled before A, it only
requires that B is fulfilled (possibly again) after fulfilling A. The reasons for this will be
elaborated at the end of the section.

Elementary criteria consist of two parts, a query and a requirement for the return
value of the query:

EC =Req for Query
Req=(every |any)value ≥ n

Query=(actions |states | transitions |sysvars) regexps

The query part of an elementary criterion returns a set of item-value pairs. The items
are actions, states, transitions or test system variables. While the first three items relate
to the test model, the test system variables give access to time and date, amount of
free memory in the SUT and the number of executed actions, for instance. There is an
item-value pair for every item that matches any regular expression in the query.

The meaning of the value associated with an item depends on the type of the item.
For actions, states and transitions we use the number of times the item has been executed

228 M. Katara and A. Kervinen

(actions and transitions) or visited (states) during the test run. For system variables it is
natural to choose the value of the variable to occur in the pair.

There are two quantifications for the values in the return value set. Either every or any
value is required to satisfy the condition. Once the requirement is met, the elementary
criteria is fulfilled.

We often use the coverage language for setting coverage requirements based on the
action word sequences. For that purpose, we define a short-hand notation (design prin-
ciple 1). If the requirement part of a query is omitted, it defaults to “every value ≥ 1”
or “any value ≥ 1” depending on whether or not the type of items is given in the plural
form. For example, the requirement that SendMMMessage and SendShortMessage are
tested after making a call can be written as follows:

action MakeCall then actions Send.*Message

which is a short-hand notation for

any value ≥ 1 for actions MakeCall
then
every value ≥ 1 for actions Send.*Message

The use case of our running example would be converted to the following coverage
language sentence simply by adding “action” in front of every action word and joining
the results with “ then”:

action Alice.Messaging.awCreateSMS
then action Bob.Messaging.awReadSMS
then action Bob.Camera.awTakePhoto
then action Bob.Messaging.awCreateMMS
then action Alice.Messaging.awReadMMS
then action Alice.Contacts.awSelectCarol
then action Carol.Telephone.awAnswerCall
then action Bob.Contacts.awSelectAlice
then action Bob.Contacts.awVerifyBusy
then action Carol.Telephone.awHangUp
then action Alice.Contacts.awSelectBob
then action Bob.Telephone.awAnswerCall
then action Bob.Telephone.awHangUp

The data in the use case (the messages “Would you like to meet for lunch?”, “I will
call you when I’ll get there”) is stored in a separate table which is used as a data source
in the test run.

Coverage requirements can also be built from a number of use cases. Both and and
then operators are sensible choices for joining the requirements obtained from the use
cases. However, depending on the guidance algorithm, they may result in very different
test runs. But before we can show why, we have to show how the operators affect the
evaluation of the coverage criteria.

Next we define an evaluation function f that maps coverage criteria to real num-
bers from zero to one. The number describes the extent to which the criterion has been

Making Model-Based Testing More Agile: A Use Case Driven Approach 229

fulfilled, number one meaning that the criterion has been completely fulfilled. The eval-
uation function is defined using function E , which evaluates an elementary criterion to
a real number, and three R×R → R functions. The three functions are T for evaluating
and, S for or, and R for then:

f (EC)= E(EC)
f (AandB)= T (f (A), f (B))

f (AorB)= S(f (A), f (B))
f (A thenB)= R(f (A), f (B))

Let us first consider function E for elementary criteria. Once an elementary criteria
EC has been fulfilled, E(EC) = 1. Defining that otherwise E(EC) = 0 would be easy
and it would not contradict the semantics. However, the evaluation would not give any
hint for test guidance algorithms about smaller advances in the coverage. When the
search depth of the guidance algorithms is bounded, or a best-first [12] search is used,
a more fine-grained evaluation is useful.

Of course, it is not always possible to give more detailed information than 0 and 1.
For instance, if a coverage requirement requires that a single state in the test model has
been visited at least once, we are clearly dealing with 0 or 1 value. On the other hand, a
requirement that every action in a set of actions is executed at least once can be thought
to be one step closer to the fulfillment every time a new action in the set is executed.
More generally, consider criterion EC that sets an upper limit to a monotonically grow-
ing query value. E(EC) evaluates closer to 1 every time the result of the query grows,
reaching 1 when the result reaches the limit.

Based on this, we define E as follows for elementary criterion EC = Req for Query:

E(EC) =
{

min(n,max(Query))/n if Req is any value ≥ n
avg w ulimit(Query,n) if Req isevery value ≥ n

where avg w ulimit is the average of values returned by the query so that values greater
than n are replaced by n. Thus E(every value ≥ 1 for actions a b) = 0.5 when a has
been executed three times and b has not been executed.

Next, we define the evaluation function so that logically equivalent coverage criteria
produce equal values. That is, the evaluation function respects the idempotence (1.x),
symmetry (2.x), associativity (3.x) and distributivity (4.x) laws presented in Table 1.

A basic result for norms in fuzzy logic [13] says that the only functions that satisfy
the properties x.1 and x.2 in Table 1 are the following:

f (AandB)=T (A,B) = min(f (A), f (B))
f (AorB)=S(A,B) = max(f (A), f (B))

When T and S are defined as above, the following R satisfies properties 4.3 and 4.4:

f (A thenB)=R(A,B) = f (A)+ f (Bafter A)
2

Where Bafter A denotes coverage requirement B whose covering does not start until A
has been covered. Therefore, f (Bafter A) = 0 if f (A) < 1.

230 M. Katara and A. Kervinen

Table 1. Equal coverage criteria

f (AandA)= f (A) (1.1)
f (AorA)= f (A) (1.2)

f (AandB)= f (BandA) (2.1)
f (AorB)= f (BorA) (2.2)

f ((AandB)andC)= f (Aand(BandC)) (3.1)
f ((AorB)orC)= f (Aor(BorC)) (3.2)

f (Aand(BorC))= f ((AandB)or (AandC)) (4.1)
f (Aor(BandC))= f ((AorB)and(AorC)) (4.2)

f (A then(BandC))= f ((A thenB)and(A thenC)) (4.3)
f (A then(BorC))= f ((A thenB)or (A thenC)) (4.4)

Let us now get back to the two possible ways to join use cases to a single coverage
requirement. Assume that we have converted two use cases to coverage requirements
CCUC1 and CCUC2. They can both be tested at once by combining them to the require-
ment “CCUC1 and CCUC2” or “CCUC1 then CCUC2”. Our test guidance algorithm is
a greedy bounded-depth search, which will be presented in the following subsection.
Here it is enough to know that the algorithm chooses the path of at most length d (the
search depth) where the value evaluated for the coverage requirement is maximal. Us-
ing the then operator to combine the requirements implies a test run where the first
use case is fulfilled before the second. But if the use cases are combined with the and
operator, it would result in a test run where the execution of the use cases advances
roughly side-by-side. Thus, we suggest combining the use cases with the same priority
using and and use cases with different priorities with then .

We have excluded the negation “not” in the language because of the design princi-
ple 5. Consider the following (false) example which would state that making a phone
call should be tested without sending an email at any point of the test run:

action MakeCall and not action SendEmailMessage

The negation would provide a way to restrict the behavior of the test model. There-
fore, the language would not anymore state the coverage criteria; it would also change
the test model. This would break the separation between the roles of the test model and
the coverage language (design principle 5). The same applies also to many other oper-
ators that we considered. For example, stating that something should be tested strictly
before something else is tested breaks the same principle. This is the reason for the
limitations of our “ then” operator.

In the language, there is a nice property obtained from the design principle 5 together
with our requirement that the initial states of test models are reachable from every other
state of the models. Consider finite sets of coverage criteria that can be fulfilled in
the same test model and that talk only about the model elements (actions, states and
transitions), not system variables. Every new criterion build by combining the criteria
in any set with and, or and then operators can also be fulfilled in the same test model.
This gives the testers the freedom to choose any combination of valid coverage criteria
to define the stopping condition for the test run.

Making Model-Based Testing More Agile: A Use Case Driven Approach 231

NextStep(s : state,depth : integer,c : coverage requirement)
1 if depth = 0 or s.outTransitions() = /0 or c.getRate() = 1 then return (c.getRate() , {})
2 best rate = 0; best transitions = {}
3 for each t ∈ s.outTransitions() do
4 c.push()
5 c.markExecuted(t)
6 (new rate,dont care) = NextStep(t.destinationState() ,depth −1,c)
7 c.pop()
8 if new rate > best rate then best rate = new rate; best transitions = {t}
9 if new rate = best rate then best transitions = best transitions ∪{t}

10 end for
11 return (best rate, best transitions)

Fig. 6. An on-line test guidance algorithm using the coverage reguirements

3.3 Using Coverage Language in Test Generation

Next, we will present a simple algorithm that can be used in test generation. First, let
us describe briefly the data structure that we use for storing and evaluating coverage
requirements in our on-line test generation algorithms.

Parsing a coverage requirement results in a tree where leaf nodes represent elemen-
tary requirements and the other nodes the operators and , or and then . Every node
implements markExecuted(transition) method. And and or nodes pass the calls to all
children, then nodes pass the call to the first child that has not been fulfilled yet (see
the definition for the R function), and leaf nodes update their item execution tables.
The tables, indexed by the queried items, store the number of executions/visitations of
each item.

All nodes also offer push() and pop() methods whose calls are always passed through
the tree to the leaf nodes. The leaf nodes either push or pop the current execution tables
to or from their table stacks. Push and pop methods allow guidance algorithms to store
the current coverage data, evaluate how the coverage would change if some transitions
were executed, and finally restore the data.

Lastly, there is getRate() method which returns the fulfillment rate of the requirement
represented by the node and its children. Non-leaf nodes calculate the rate by asking
first the rates of their child nodes and then using T , S or R function, depending on the
operator of the node. Leaf nodes evaluate the value with the E function.

The NextStep function, presented in Figure 6, can be used as a core of the test gen-
eration algorithms. Three parameters are given to the function: a state from which the
step should be taken, the maximum search depth in which the algorithm has to make
the decision, and the coverage requirement, that is, the root node of the tree. The func-
tion returns a pair: the best rate that is achievable in the given number of steps (search
depth) and the set of transitions leaving the given state. Any of those transitions can be
executed to achieve the coverage rate in the given number of steps.

For simplicity, we did not take into account in NextStep that the SUT may force the
execution of certain transitions in some states. Instead, we assumed that the suggested
transition can always be executed. If this is not the case, one can use the expectation value
for the fulfillment rate in place of getRate() (for details, see “state evaluation” in [14]).

232 M. Katara and A. Kervinen

4 Related Work

The idea of using use cases (or sequence diagrams) to drive test generation is not new.
In addition, it has been suggested to use more expressive formalisms, such as state
machines [15,16]. Traceability between requirements and model-based tests has also
been studied before. For instance, Bouquet et al. present an approach in [17] where the
idea is to annotate the model used for test generation with requirement information. The
formal model is tagged with identifiers of the requirements allowing model coverage to
be stated in terms of requirements. This allows automatic generation of a traceability
matrix showing relations between the requirements and the generated test suite.

We have tackled these issues from a slightly different angle. In a restricted domain
such as ours, test modeling can be assigned to some internal experts or third parties.
Then, the primary task of the test automation engineer is to transform use cases to se-
quences of predefined actions words. The action words correspond to concepts familiar
to testers in the particular domain, thus facilitating the translation. Our generation algo-
rithms use the action word sequences as coverage objectives. Moreover, a test run pro-
duces a test log that can be used for generating reports based on requirements coverage.

In formal verification, the properties concerning models are commonly stated in
terms of temporal logics such as LTL [18] and CTL [19]. This approach has been
adopted also for test generation in model-based testing, for example in [20]. We de-
fined a simpler and less expressive language for coverage for two reasons. Firstly, using
temporal logics require skills not too often available in testing projects. Secondly, the
strength of logics is great enough to change (restrict) the behavior of the test model:
fulfilling a criterion can require that something is not tested. What we gained is that
coverage requirements cannot conflict.

5 Conclusions

In this paper we have introduced an approach to adapting model-based testing prac-
tices in organizations developing software using agile processes. Such organizations
are often reluctant to develop detailed models needed in most other approaches. Our
approach is based on a domain-specific methodology that entails high-level of automa-
tion. The test models are developed incrementally by internal experts or third parties,
and the informal uses cases are used to drive the test generation. This involves simple
translation from the events listed in the use cases to actions words used in the high-level
test models. Such action words describe the abstract behavior that is implemented by
lower-level keyword models in the test model library.

We have also defined a test coverage language used in producing coverage objectives
from the sequences of action words. The language supports different kinds of testing
modes such as requirements coverage, bug hunting, or smoke testing. In the first two
modes, the coverage objectives obtained from the use cases are used as input to the test
generation algorithm.

We are currently implementing a tool set supporting our scheme. The future work
includes conducting industrial case studies to assess the overall approach as well as
investigating the defect-finding capability of the presented heuristic. Moreover,

Making Model-Based Testing More Agile: A Use Case Driven Approach 233

since model-based tests include complex behavior, some of the defects can be very
hard to reproduce. Towards this end we must explore different possibilities to ease
debugging.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments.

References

1. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Addi-
son Wesley (2004)

2. Ambler, S.W.: Agile modeling homepage. Available at http://www.agilemodeling.com
(2006)

3. Kervinen, A., Maunumaa, M., Pääkkönen, T., Katara, M.: Model-based testing through a
GUI. In: Proceedings of the 5th International Workshop on Formal Approaches to Testing of
Software (FATES 2005), Edinburgh, Scotland, UK, Number 3997 in LNCS, Springer (2006)
16–31

4. Kervinen, A., Maunumaa, M., Katara, M.: Controlling testing using three-tier model archi-
tecture. In: Proceedings of the Second Workshop on Model Based Testing (MBT 2006),
ENTCS 164(4) (2006) 53–66

5. Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T., Satama, M.: Towards deploying
model-based testing with a domain-specific modeling approach. In: Proceedings of TAIC
PART - Testing: Academic & Industrial Conference, Windsor, UK, IEEE Computer Society
(2006) 81–89

6. S60: Symbian S60 homepage. Available at http://www.s60.com (2006)
7. Fewster, M., Graham, D.: Software Test Automation. Addison–Wesley (1999)
8. Buwalda, H.: Action figures. STQE Magazine, March/April 2003 (2003) 42–47
9. Wells, D.: Extreme programming: a gentle introduction. Available at http://www.

extremeprogramming.org (2006)
10. Craig, R.D., Jaskiel, S.P.: Systematic Software Testing. Artech House (2002)
11. Fowler, M.: Continuous integration. Available at http://www.martinfowler.com/

articles/continuousIntegration.html (2006)
12. Russel, S., Norvig, P.: Artifical Intelligence. Prentice-Hall (1995)
13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer (2000)
14. Kervinen, A., Virolainen, P.: Heuristics for faster error detection with automated black box

testing. In: Proceedings of the Workshop on Model Based Testing (MBT 2004), ENTCS 111
(2005) 53–71

15. Jard, C., Jéron, T.: TGV: theory, principles and algorithms – a tool for the automatic synthesis
of conformance test cases for non-deterministic reactive systems. STTT 7 (2005) 297–315

16. AGEDIS Consortium: AGEDIS project homepage. Available at http://www.agedis.de/
(2004)

17. Bouquet, F., Jaffuel, E., Legeard, B., Peureux, F., Utting, M.: Requirements traceability in
automated test generation – application to smart card software validation. In: Proceedings
of ICSE 2005 Workshop on Advances in Model-Based Software Testing (A-MOST), ACM
(2005)

http://www.agilemodeling.com
http://www.s60.com
http://www.extremeprogramming.org
http://www.extremeprogramming.org
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.agedis.de/

234 M. Katara and A. Kervinen

18. Pnueli, A.: Temporal semantics of concurrent programs. In: Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science, IEEE Computer Society (1977) 46–57

19. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Workshop on Logic in Programs. Number 131 in LNCS,
Springer (1981) 52–71

20. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based coverage theory of
test coverage and generation. In: Tools and Algorithms for the Construction and Analysis
of Systems: 8th International Conference (TACAS 2002). Number 2280 in LNCS, Springer
(2002) 327–339

Author Index

Abadir, Magdy S. 34
Agha, Gul 166

Barner, Sharon 138
Bloem, Roderick 50

Dattathrani, Sai 109
Drechsler, Rolf 50

Eisner, Cindy 138
Elamkulam, Janees 109
Eytani, Yaniv 183

Feng, Tao 34
Fey, Görschwin 50

Glazberg, Ziv 109, 138
Gordon, Mike 1
Gupta, Satish Chandra 109
Guzey, Onur 34

Hartman, Alan 204

Jackson, Michael 198
Jörges, Sven 92

Katara, Mika 204, 219
Kervinen, Antti 219
Kohli, Sandeep 109
Kowlali, Gururaja 109
Kroening, Daniel 138
Kubczak, Christian 92

Latvala, Timo 183
Levin, Stella 155

Macia, Claudio Paniagua 109
Margaria, Tiziana 92
Miller, Hillel 34

Nagel, Ralf 92
Nahir, Amir 16

Olvovsky, Sergey 204

Patil, Viji 81

Rabinovitz, Ishai 109, 138

Schneider, Klaus 1, 65
Schuele, Tobias 65
Sen, Koushik 166
Shiloach, Yossi 16
Staber, Stefan 50
Steffen, Bernhard 92

Tuerk, Thomas 1

Ur, Shmuel 122, 124

Wang, Li-C. 34
Wen, Charles 34
Wernick, Paul 124

Yarom, Itai 81
Yehudai, Amiram 155
Yom-Tov, Elad 124

Ziv, Avi 16

	Title
	Preface
	Organization
	Table of Contents
	Model Checking PSL Using HOL and SMV
	Introduction
	Basic Notions
	Kripke Structures
	Linear Temporal Logic (LTL)
	Reset Linear Temporal Logic (RLTL)
	Accellera's Property Specification Language
	-Automata

	Translations
	Infrastructure
	Application: Validating a Translator from PSL to CTL
	Conclusions and Future Work

	Using Linear Programming Techniques for Scheduling-Based Random Test-Case Generation
	Introduction
	The DVD Player SoC Example
	MPEG-2 Format
	DVD Player SoC

	Stimuli Generation for the DVD Player SoC
	Mixed Integer Programming
	Formal Representation
	Common Uses
	Relevant Algorithms

	The MIP Model
	Modeling Framework
	Temporal Scheduling Constraints
	Domain Specific Constraints
	Stimuli Generation Requirements

	Experimental Results
	Expressiveness
	Performance
	Scalability

	Conclusions

	Extracting a Simplified View of Design Functionality Based on Vector Simulation
	Introduction
	Background
	OBDD-Based Learning
	Experimental Results
	Experimental Results in the Restricted Input Space

	Extending Boolean Learning to Hybrid Domain
	Learning Word-Level Functions
	Template Matching
	Multivariate Polynomial Interpolation

	Hybrid Experimental Results
	Conclusion

	Automatic Fault Localization for Property Checking
	Introduction
	Related Work
	Diagnosis for Properties
	Computing Fault Candidates
	Functionality Constraints
	SAT Techniques
	Simulation Based Preprocessing
	Discussion

	Source Level Diagnosis
	Instrumentation Approach
	Hierarchical Approach

	Experimental Results
	Accuracy
	Runtime

	Conclusions

	Verification of Data Paths Using Unbounded Integers: Automata Strike Back
	Introduction
	Foundations
	Alternating Finite Automata
	Quantifier-Free Presburger Arithmetic with Bitvector Operations

	Translation of Quantifier-Free Presburger Arithmetic to AFAs
	Checking Emptiness of AFAs
	Experimental Results
	Summary and Conclusion

	Smart-Lint: Improving the Verification Flow
	Introduction
	Smart-Lint
	Smart-Lint Implementation
	Clock Domain Crossing
	Lint Closure
	Structural Coverage
	Timing Constraint Verification

	Experiences at Intel
	Summary
	References

	Model-Driven Development with the jABC
	Lightweight Process Coordination
	The Java Application Building Center
	Overview of the jABC Architecture
	The LocalChecker
	Model Debugging Via the ModelChecker
	The Tracer
	The Execution Environment
	Parallel Execution
	Remote Debugging Tool

	The Code Generator
	Related Work
	Conclusion

	Detecting Design Flaws in UML State Charts for Embedded Software
	Introduction
	Connecting RoseRT and RuleBase
	Constraint Specification
	Transforming RoseRT Model
	Executing RuleBase and Transforming Counterexample

	Experimental Results
	Related Research
	Conclusions and Future Work

	A Panel: Unpaved Road Between Hardware Verification and Software Testing Techniques
	Introduction
	The Simulation Model
	Outline of the Model
	Model Default Values
	Sensitivity Analysis

	Sample Simulations
	Comparing Waterfall, Iterative, and Test First Approaches
	Evaluating Pair Programming
	Evaluating Test Automation

	Summary
	Future Work
	References

	ExpliSAT: Guiding SAT-Based Software Verification with Explicit States
	Introduction
	Preliminaries and Definitions
	Symbolic Verification Using Explicit CFG Traversal
	The Naïve Hybrid Algorithm
	Simplifying Constraints Using Explicit Values

	The Path Representative
	Computing the Path Representative
	Concurrency

	Experimental Results
	Case Studies
	Artificial Examples

	Conclusion and Future Work

	Evolutionary Testing: A Case Study
	Introduction
	Genetic Algorithm Search for Testing Problem
	Genetic Algorithm
	Test Data Generation Problem
	Testing Problem as an Optimization Problem

	Testing System Description
	Program Static Analysis
	GA Search

	Experimental Results
	Triangle Classification
	Bubble Sort
	Greatest Common Denominator
	String Matching
	Uniq UNIX Utility

	Conclusions
	References

	A Race-Detection and Flipping Algorithm for Automated Testing of Multi-threaded Programs
	Introduction
	Overview of Our Approach
	Execution Model
	The Race-Detection and Flipping Algorithm
	Case Studies
	Java 1.4 Collection Library
	NASA's Java Pathfinder's Case Studies

	Related Work
	Conclusion

	Explaining Intermittent Concurrent Bugs by Minimizing Scheduling Noise
	Introduction
	Concurrent Bug Patterns
	Concurrent Bugs Are Small

	Seeding Noise
	Explaining Intermittent Concurrent Bugs
	An Algorithm for Minimizing Noise
	Experimental Results
	Related Work
	Lessons Learned and Conclusions

	Testing the Machine in the World
	Introduction
	Model-Based Testing
	Model-Based vs. Model-Driven Testing
	On-Line vs. Off-Line Testing
	Behavioral Modeling
	Test Objectives

	Design vs. Test-Specific Languages
	Using a Design Language
	Using a Test-Specific Language

	Domain-Specific vs. Generic Language
	Domain-Specific Languages
	Generic Modeling Languages

	Further Considerations
	Visual vs. Textual Languages
	Commercial vs. In-House vs. Open-Source Tools
	Proprietary vs. Standard Language

	Pitfalls and Solution Considerations
	Testing Solution Language and Tooling Choice Pitfalls
	Solution Guidelines for Different Organization and Project Types

	Conclusions

	Making Model-Based Testing More Agile: A Use Case Driven Approach
	Introduction
	Background
	Role of Requirements in Agile Development
	Domain-Specific Test Modeling

	From Informal Use Cases to Model-Based Tests
	Use Case Driven Testing
	Coverage Language
	Using Coverage Language in Test Generation

	Related Work
	Conclusions

	Author Index

